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PREFACE

Axy conrse in Advanced Caleulus must deal with partial differen-
tiation and mulfiple integrals, with systematio integration, with im-
proper integrals, and to some extent with complex quantities. Be-
fore modern methods in analysis — “e-methods,” as they are sometimes
called — had been developed, the race became aware of a wide range
of applications in physics (including geometry, the noblest branch of
physics) which, although not yet technical, nevertheless make exact-
ing demands on precise formulation and thus bring out both the phys-
ical hypotheses and the analytic means of working with them. The
deduction of the partial differential equation which governs the fiow
of heat or electricity in conductors, the establishment of the egnation
of continuity in hydrodynamics and elasticity, and the getting up of
the equations which describe the motion of the vibrating string or
membrane, are cases in point. In these days when modern physies
is primarily interested in the motion of discrete particles, it is par-
ticularly timely to emphasize continuous distributions of physical sub-
stances throughout regions of space, and continuous transformations
of space.

The demands which geometry makes on partial differentiation are
relatively slight. In thermodynamics a thoroughgoing apprecistion
of what the independent variables are (in order that, when the letters
expresaing the variables of two classes overlap, the meaning of the
partial derivatives may be clear) and the ability to think in terms of
line integrals, are indispensable.

Oscillatory motion is a basal conception in phymea. Bimple har-
monic motion ; next, the simplest case of dasgping ; and finally the
case of an :mpressed periodic foree — these physical pictures are im-
portant alike for the student of physice and the student of pure
mathematics, for they help to give him perspective as he prooseds
with the study of the chapter in differential equations which reliteh
m&amlmmo&mmrymue problams by meahs of

ver, Poarler's series and similar Mﬁpﬂwm
M% mﬁmﬁ’m&t&ay here find,
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In the early days of modern mathematics no sharp distinction was
made between the Differential and Integral Calculus, and the Caloulus
of Variations —it was all, the Infinitesimal Calculus, With the
knowledge of the great delicacy, both in concepts and methods, of
which the Caleulus of Variations is capable, came to mathematicians
an awe of this subject, which resulted in a certain aloofness ; the sub-
ject became a topic in the theory of functions of real variables. For
the physicist, however, Hamilton’s Principle is indispensable, and he
has been obliged to get together some account of the rudiments of the
Caleulus of Variations as best he may, Sufficient conditions for a
maximum or & minimum of an integral do not interest him. Heneeds
to know when a certain integral is stationary, and this condition de-
pends an, the definition of.a variation, 8z, 8U, ete. It is, therefore,
essential that this definition be treated with care from the start,
for it becomes increasingly complex as one proceeds. The Principle
is applied to a variety of important problems in elastic vibrations.

There is a chapter on the systematic treatment of differential equa~
tions. But what is far more important is the unsystematic treatment
of differential equations, which permeates these two volumes on the
Calenlus, beginning with the chapter on Mechanics in the Introduction
to the Calculus. I have, moreover, taken occasion in the present
chapter to point out the inner meaning of a differential equation
through the geometric picture of a field of infinitesimal vectors or an
assemblage of surface elements, and have thus led up to the idea of
the integrals as families of curves, or of surfaces generated by
charagteristic strips.

As regards method, it sometimes happens that the nafve use of in-
finitesimals, even when it cannot be directly justified, has suggestive
heuristic value ; consider, for example, the transformation of multi-
ple integrals and the flux across a surface ; Chapter XII. In such
cases, I have taken pains to conserve all that is helpful in these
primitive conceptions, and have then supplemented them by proofs
-which meet our present standards of rigor. In this connection may
also be cited (although it is not a question here of infinitesimals) the
ote an density and specific pressure or specific force ; Chap. 111, § 14.
. A new form of the definition of & definite integral, simple or mul-
$iple, makes, possible a simple and rigorous proof of the Fundamental
Theorem of the Integral Calculus ; Chap, XI1, §§ 1-3.

«:h00%e 18 a chapter on Vector Analysis, with applieations to the
proof of Stoke’s Theorem and the deduction of the Frenet formnlas.
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Lagrange’s Multipliers appear in maxima snd minima of fnmotions
of several variables. Fourier's series apd the allied developments
into aeries of Bessel’s functions and zonal harmonics are treated from
the point of view of making the integral of the square of the error
& minimum, v -

In the foregoing I have been describing those aims of the book
which are not common in the text-books of the present day. To at-
tain these ends, a purely mathematical treatment, availing itself of
that which is best in the mathematics of today, buf at the same time
adapted to the powers (and the weaknesses) of the Junior or Senior
in our colleges and achools of technology, must go before ; and, indeed,
not only the early parts of the various chapters, but by far the
greater part of the space throughout the whole book is devoted to
matters of an elementary nature. The book begins with the mast
rudimentary properties of polynomials and fractions, in preparation
for integration, and the last chapter might well have been entitled :
% The Story of V/— 1.” It may seem exorbitant to spend ten pages
on the study of integrals involving Va + b= + cz?and yet, a thorough-
going understanding of all that is here involved covers substantially
the whole field of systematic integration. But why should a physi-
cist worry about the sign of a factor removed from under a radical
gign? Merely because an error here gives him a wrong result in a
problem on attractions.

The book is 80 written as to afford the greatest latitude in the
order in which the various topics may be taken up. Thus the student
may begin with the chapter on Partial Differentiation, or Double
Integrals, or Differential Equations. Even within a chapter there is
often a choice ; ¢f. for example the foot-notes on p.p. 44 and 106. Per-
sonally, I should not wish to begin the course with Chapter I. For,al-
though the subject is largely formal, testing the student’s training in
high school algebra and teaching him how to evaluate somewhat intri-
cate integrals, the treatment should also serve to give him insight
into the methods of algebra, and it should encourage him to become
acquainted, for example, with the early chapters of Bocher’s
Algebra.

1t is assumed that B. O. Peirce’s A Short Table of Integrals, Ginn
& Co., Boston, is in the hands of the student. The references to
Analytic Geometry are to Osgood and Graustein’a Plane and Solid
Anglytic Geometry, Macmillan, 1921,
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An honest attémpt has been made to meet the undergiaduste on
his own ground. « The appeal is not merely to the specialist in math.
ematies or physices ; it is to all who wounld possess themselves of the
Calculus as a method for understanding, in the broadest sense of the
term, the quantitative relations which follow from the laws of nature.

CaxBRIDGE, MASSACHUSETTS,
September, 1925.
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CALCULUS

CHAPTER I

GENERAL METHODS OF INTEGRATION

In the first treatment of Integration,* various devices were set
forth, whereby many integrals could be evaluated, but no general
methods of integration were discussed. The object of the present
chapter is to show how certain large and important classes of func-
tions can be systematically integrated. The leading theorem is this,
that every rational function can be integrated in terms of the elementary
Sunctions. Its proof depends on certain properties of polynomials
and fractions, and so we begin with the discussion of these properties.

1. Polynomials. By a polynomial is meant a sum of monomial
terms,
CE™ + Cot™ 4 o+ 4 C ™,
where the exponents are positive integers or zero. Such a sum can
be written in the form :

1) G(2) = ag + oy + a2? + o+ 4 a,z%
where the coefficients, ¢, do not depend on 2z, and » is a positive
integer, or 0. In particular, a polynomial may reduce o a single
term, as 2* or — z or cor 2 or 0.

If a, is not 0, the degree of G/() is defined as n. Thus the poly-
nomials

ad — 2, -z, b

are respectively of degree 3, 1, and 0. The polynomial O has no
degree, and it is the only polynomial which has no degree **

It is clear that the sum, the difference, and the product of two

* Cf. the ainthor's miroduction to the Caleulus, 1922, Chap, I1X.
#» Although the treatment here given is complete, the student will ind it use-
ful to read the first chapter of Bocher's Algebra.
1



CALCULUS

values of », where i < n, then the correspouding coefficients wus$
be respectively equal :

= by, G =28, «+ @g,=5d, n = M.
For, the difference, G (x)— g(«), vanishes identically.

EXERCISES
Factor each of the following polynomials :
1. o —at 2. 2*+4ad 8. 24 axt
, 4 *—2a%?4 at 5. 24 2 a%?® + at.
8. 24+ 5% +6. 7. 1625 —1224 — 3 2%,
8 24+6x47. Ans. (z+3+V2)(x +3 —V?2)
9. 222 42—T. 10. 62* — 2% —6 2
11, 2#—a". 13, 28 —at 13. 222 -3.

2. Fractions. A fraction is the quotient of two polynomials,*
g(x)/G(x). The numerator, g(x), may be any polynomial whatever.
The denominator, G(z), may be any polynomial but 0.

If the degree of g(x) is less than that of G(z), the fraction is
called a proper fraction. TFor example:

6z 12 |
4 422 2—32
In all other cases, the fraction is called an improper fraction. For

example:
222 41 z41
z4+3 " - x

The fractions include the polynomials as particular cases, since
G(x) may = 1.
It may bappen that numerator and denominator have a common
factor ; e.g.
©-a,
B —at

+ % The term fraction in elementary algebra is also applied to expressions like

G-/

which can be reduced to a fraction as defined abuve. It is preferable hence-
Yorth to denote suth expressions as rational functions; cf. § 8. Sometimes
expressions like z/v/a — z, or (sinz)/z are called fractions. This use of the
word will not occur in this book, since it would lead only to confusion.
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When all such factors have been divided out, the resulting fraction
is seid to be ¢n its lowest terms. Thus the above fraction, when
reduced to its Jowest terms, becomes:

—rte |
2 4 gz + a?

When a fraction is given, the first thing to do is, if necessary, to
reduce it to its lowest terms, and we shall tacitly assume that this
has been done.

An improper fraction (which is not a polynomial) can be reduced,
by the process of division, to the sum of a polynomial and a proper
fraction. For example,

200 -2 222 323 z—2
=2x2~3r—-14=""__.
?4ar4+1 “ +x’+av+1,

Since our ultimate object is that of integrating a given fraction,
i.e. of evaluating
9@ 4
6@

and since the integration of polynomials presents no difficulty, we
shall be interested in the further study only of proper fractions.

EXERCISES

Reduce each of the following fractions to the sum of a polynomial
and a proper fraction.

1 @441 2 :v’+:n+1_ 3. z2+a:+1'
) z ) x? 41

o 2+1 5. 21, g —=bz+86
T —1)2 T2 4a? bz+2

g B—828 4232416 , Tzl
) #?tzx+1 (z—1)

3. Partial Fraotions. It is possible to express any proper frac-
tion as the sum of fractions of the following types:

) ;‘_1;, (_:e—:c-zF' m, a positive integer;

Frpr+q (@ +po + 0’
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I3

20. (6z+413)dw 1. 2-—3n)dx 29, ’gm*-i-l)dm.
St —Tx—3 34+22 a8 J3#+z—1

4. Continnation. Multiple Linear Factors. If G/(2) contains the
factor z—a m times:

G(@) = (2 — Q)" $(z), 1gm,
where ¢(z) is not divisible by x — a, then the given fraction can be
written in the form:

2) s = e 4 La_ S
SR 7 i e A T
where f(z)/¢(z) is a proper fraction, or zero, and 4,+% 0. For the
proof, cf. § 5.

Ezample 1.
—~32*—2z4+3_A B C .
@ dr@ @z al

for, since ¢(z) == + 1 is here of the first degree, f(x) must reduce
to a constant.

We can now proceed as in the last paragraph, clearing equation (2)
of fractions:

—32*— 224 3= A(z+1)+ B(* + z)+ O,
or
3-22—-322=A+(4d+ Byx+(B+ ()2

This equation will bold for all values of = if 4, B, and ¢ can be so
determined that

A=3, A+B=-2, B+ (O=~-—3.
Solving these equations, we find
A=3, B=-—5, C=2.

Hence, on substituting these values and retracing our steps, we find ;
—~3x22—-224+3 3 _§+ 2

28 4t =7 z z +1 )
The truth of this equation can be at once verified.
Example 2.

z__ A + Bz 4 C
2-1 z-1 24z4?

for bere d(x)=2>+ 241, and 80 f(2) can be at most of the first
degree. Proveeding as before, we have).- {
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z=A(F+z+1)+ (Bz+ O)(z—1),
2= A— O+ (4d— B+ O)z+ (A + Bz
A—C=0, A—B+C=1, A+ B=0;
4=4 B=-1} O=4;

x 1 + —x41
?-1 3(3:-—1) 3(a;2+m+1)

Evaluation of the Integral [ A2+ B)dz 2 44 <.
2 4 pz+ g

When p =0, ¢ is positive and can be set = a?, and the evaluation
is immediate, for

zde _1 2 2
® Sara=3 e+,
4) L de 1, a2,

m’+a“ a a

If p % 0, a linear transformation serves to reduce the given inte-
gral to the forms (3) and (4). 'We can write

z’+pz+q=w“+pm+(2> +q—{’1 (z+p> + at,

where the positive number, ¢ — p?/4, has been set equal to a?. Next,

set
=z+5;

f dz = dt 1 tan1 Lt = 2 tan-1 2z4p
T a a

tpete Jo+a vig—p  Vig—p
Similarly :

{t—3p)dt,
2+ pz + g + px + q 4 a?
This last integral comes back to (3) and (4), and thus the integration
is accomplished.
zdz

Example. To evaluate | —"——-
e Z1dzF9

Here, t=x+2, at =5,
zde - (t=2)at
4449 24 a?
2

=ilog(a +4z+9)—2—tan1ZEt2 L
jlog(@®+42+9) 7 ‘/3+
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EXERCISES f
Express the following fractions in terms of partial frastions,
y 3#-22-8 , 6 4 _1
P o —6a22+ 92 (2~ 1)t
at 2?2241 22— 2
L 5 =222, 6 ——£.
i opmp P @+1)
4+z+1 z 9 28—~z — 4
L TS i et
4a 1 1 2a
10. z — at 4ns. z—a z+a 2+t
-2 . 2+ ® .
11, e al 12. SAta 13. porat
—2:n'+2z2—2m+6_ 2 __3 x—4 .
W e e —z+2 P G r-it@—zil
15 288 +2224+2246 16 z+1 .
" @+ 1@tz +2) " e+ 2P +1)

Evaluate the following integrals, using the method of the text,
not the final formulas.

1. de 18. (b2 —6)dx 19, [ 2dz
F+2z42 P+2z 40

322—-22+3
20. Integrate the fraction of Question 14,
8. Lemma I. The proof of the theorem about partial fractions

rests on two lemmas.
Leuma I.  If G(x) contains the factor x — a precisely m times :

G(@)=(z — a)~¢(2), 1= m, $(a)= 0,
the fraction can be written in the form :

go) 4 J(=)
@ G@) (z—a) + (x — a)~1¢(z)’ 4#0,

where the last term is a proper fraction, or zero.
Form the difference,
gle) 4
G@) (x—a)~’
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where A is any constant whatever, and reduce to a common .de-
nomingtor :
4@ __ A @) — Ad(z),
G@ (@E—a)y (z-—a)¢)

If we cam determine .4 so that the numerator of the last fraction
is divisible by z — a, then we can cancel x — a at least onece from
numerstor and denominator, and on transposing the term 4/(x — a)~,
the theorem is proved.

The condition that # — @ divide the numerator is that x =a be a

root, or g(a)— A¢(a)=0.
This equation can always be solved for 4:

2 A= (@
® (@)’
since by hypothesis ¢(aj# 0. This completes the proof.

The last fraction in (1) is not necessarily in its lowest terms, for
it may happen that a higher power of # — a can be cancelled from
numerator and denominator. But no factor of ¢(x) can divide f(z).
For, multiply (1) by G(=):

9(@)= A¢() + (z — a)f ().
A factor common to ¢(z) and f(z) would thus divide g(z). Hence
g(z) and ¢(x) would bave a common factor, and the original fraction,
g(®)/ G(z), would not be in its lowest terms.

We observe that equation (2) gives an explicit determination of
A, and thus avoids the computation of the earlier method, § 3, and,
in a measure, the computation in § 4.

Ezxample 1. Consider the fraction

g(z) _ 2+r+1
@@ @-Da—2)@—3)
By the lemma, we can write it in the form
4@ _ 4 f@)
G@) z—1" (@)’
where a=1, $@=(@E-2)(x~3), gE)=2+2+1

H gy 38 _3
smce A= EDED Y
and R4zt 3 f(=)

E-DE-2@~9) -1 E=2@—3)
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We oould compute j(#) by transposing the first term on the right
snd reducing, and then applying the lemma to the new fraction.
But the explicit determination of f(z) is unnecessary. We see from

the lemma that - f(@) _ B + C
@®—2)(—-3) -2 z—3 P

and hence the original fraction can be written:

g ___ 3 B c_.
G@) 2@—1) Tz-27z-3
Now, we might equally well have begun with the root 2 of G(x).
Denote it by b; denote the corresponding function ¢(z) by ¢,(x):

di(x)=(z — 1)(=z — 3);
and denpte the new 4 by B:
_9®) _9@ _ T
$:(b) w2 -1
Thus B is determined: B=-—7. C can be found in a precisely

gimilar way ; its value turns out to be 32 Hence, finally,
24241 3 7, 13
@E—1)@—2)z—3) 2=—1) z—2 2@x—3)

Uniqueness. 'There is really a question of uniqueness here involved.
How do we know that the B determined in the one way and the B
determined in the other are the same number ?

Suppose they were not. Then we should bave:

£ B
_éﬂ(;%=x—2+ R and gﬁ(;g—r+5(z),

where R(x) and 8(z) are fractions, each continuous at x==2. Sub-
tract the one equation from the other:

0= ‘-’i—ﬁ + R(z)— 8(z).

And now let z approach the limit 2. R(x) and S(#) both approach
limits,. Hence B — B' = 0; for otherwise the first term on the right
wonld become infinite. Thus B' = B, $(z) = R(z), and the unique-
ness is established.

In the same way it can be shown generally that the A4 of formula
(1) is uniquely determined. This fact can be read off at once from

the equation #{a) — A¢(a) =0,
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since the latter represents a necessary, as well as & sufficiens, condition
that g(x) — A¢(z) be divisible by v — a.

Ezample 2. Let
9@ _3a-1
G(z) o+ 22
Here, a=0, ¢@)=22+1, g@)=38z-—1,
d 4=90__;
= ¢(0)
8z—-1_ 1, 7@,
Thus Py = 1& g

The next step is most conveniently taken by actually computing
S(@). This can be done by transposing, reducing, and multiplying
through by #* + . Thus we find: f(z) =z + 3. We now deal with

the new fraction, z+3
2?4z
setting o=0, d(z) =22 41, g®) =243,

and thus see that 4 = g(0)/¢(0) = 3; hence

z+3 3, Cz+ D,
w'+z z a2t41

The coefficients; ¢ and D, could be obtained by clearing of frae-

tions and comparing coefficients. A shorter method, however, is
the following. First, multiply through by «:

z+3 Oz + Dz,
=8 2T T
PO e s W
and now allow z to become infinite. Thus we see that 0 =—3,
and

z+3 3 —3z+ D,

w’+w_z+ 241

4

Finally, to determine D, give to  any special value for which no

denominator vanishes. A simple value is #=1; thus
/
g=34=3+D D=1,

2
and the final result is:

8z—-1_ 1.3 3:5—1
o+ 22 oz B+
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The truth of this equation can be verified by reducing the right:
hand side to a common denominator.

We now have at our disposal (f) the method of undetermined
coefficients, set forth in §§ 3, 4; (ii) the explicit formula (2);
(i) the method of giving to @ a number of convenient special
values, or of allowing = to become infinite, after multiplying the
equation through by a suitable power of z. The best results are
obtained by a skillful combination of all these methods.

EXERCISES

Work a number of the Exercises of § 4 by means of the present
labor-saving devices.
6. Lemma YI. We proceed now to the second lemma.
Lemma II. If G(x) contains the factor «®+ px + q precisely m
times:
- ¢(z) not divisible by
B@=(@+po+oré(®), 1Sm, p—1g<0, {47 TrlT
the fraction can be written in the form:
Ien g®) Az + B J(@) , {Aund B
G) (@F+pr+q” (@ +po+g) (@) not both 0.

\

where the last term i a proper fraction, or zero.
Form the difference, and reduce to a common denominator:

@) gx) _Ax+B _g@)—(dz+ B)¢(x),
G @E+pp+g)” (@ +pz+ Q(2)

‘We wish to show that 4 and B can be so determined that the
numerator is divisible by «* + pz+¢. Divide g(x) and () by
® 4+ pr4q:

g(z) = Q@) (z* + pz + q)+ Lz + M,
(@)= Q) (@ + pz + @)+ Az + p.

Here, one or both of the quotients, Q,(z) and Qu(x), may be 0, — thas
makes no difference. But L and M cannot both vanish, for then
g(#) would be divisible by #* 4 px + ¢, and so the original fraction,
¢(#)/G(z), would not be in its lowest terms. And similarly, A and
# eannot both be 0, for then ¢ () wounld be divisible by o* + px + ¢
~oontrary to hrnothesis.
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I, now, the numerator on the right of (2) is to be divisible by
28 + px 4 g, it is clearly mecessary and sufficient that

Lz + M —(4z+ B)(Az + u)
be divisible by #* + pxr + ¢q. Multiply out:
Le+ M—(4de 4+ B) (M + p)=— r42? —(ud + A\B— L)z — pB+ M;
and now divide this last polynomial by >4 px + ¢:

.Y
Prpu+q)—Ads? — (A +AB— Lyz — pB4+ M
— Az —prde —grd

{(~p+pNA—AB+ Liz+ QAA—uB+ M

The last line gives the remainder, and this must vanish identically.
Hence we must have:

& {(—p+px>A—>~B+L=o,
\ q).A —_ ].I-B + M=0.
These are two linear equations for determining the unknowns, 4
and B. They are non-homogeneous, since L and M are not both 0.
Their determinant is :

-— A —
F.q';‘p .-_:.'l:p.’-—p/\p-{"q*’.

Tts value is not 0. For, we can write it in the form:
2
KE — pAp +qh’=>\*{(—-§) +p(—’f)+q},

provided A % 0. Now, the brace cannot vanish; for then the quad-
ratie polynomial #? + pz + g would have a real root, # = — p/A. If,
on the other hand, A = 0, the above determinant reduces to u2.  Since
A and p are not both 0, the determinant does not vanish in this case,
either.

Hence equations (3) admit, in all cases, one and only one solution,
and A and B are uniquely determined. They are not both 0, for
then L and M would both be 0. This completes the proof.

It may bappen that the last fraction in (1) is not in its lJowest
terms, the numerator being divisible by a power of 2* + p= + ¢g. But
no factor of ¢(x) can divide the numerator.

Example 1, Let
GO Cal .
G@) @+o+1)(=*+1)
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Phen we have:
@ - o d2+B  Co4+ D
@retr D@ +1) @t+z+l B4+1
First, multiply through by =:
2 _ A7+ Bs O+ Do

@+o+D)@+1) o+l 241

Jow allow 2 to become infinite, and we find :
f) A+ C=0.

Next, give to » the simplest possible value, namely 0:
%) B4+ D=0.

The next simplest values for z are 1 and — 1:
—C+D
=

or 2442B43C+3D=1:

iv)%:—A+B+ or —2A442B-C+D=1.

From (f) and (ii):
h 0 = - A, D=— B.

Substituting these values for €' and D in (i) and (iv), we get:
—A4-B=1,
—A4+B=1.

Ience A=~—1, B=0. Moreover, C=1, D=0. Thus
a2 = — + z_
@+rc+@*+1) 224+z+1 2241
Example 2. Let

@ _ 2
G(z) (@*+az41)2

Iere, ¢(x) is of the 0-th degree, and it is simpler not to use the
amma, but to proeeed directly by division:

z~1
o+ x4 )P
424
—_—f
—t -1
1
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Hence
2 _ o141
Azl 1+m2+m+1'

@Hretr ) @trarlyp Pzl
This method is also simpler in such cases as

9@ _4z2—a+5,
Q@ (2x-—3)

EXERCISES
Express the following fractions in terms of partial fractions.
1 ad — g2 . 2 1 . 3 z
T —2+2)(@—22+3) T FS+2288+=z 0 2tat
4 1 . 5 B2 8 ®—df
T (4 2t 4 ) T @x—z4+5)2 (2?4 a?)?

7. Proof of the Theorem on Partial Fractions. Let g(z)/G(x) be
a proper fraction in its lowest terms. If

G(@) = (z — a)"¢(2), 1=m,
where ¢(z) is not divisible by # — a, then the fraction can, by the
repeated application of Lemma I, be written in the form:
9@ ___ 4, 4, o 4 An_y 0(@)
G(:c)_(m—a)"+(a:—a)'"“+ +a:—a+¢(:v)’
where the last term on the right is either a proper fraction in its
lowest terms, or zero. 4, canunot vanish; but any or all the later

A’s may be zero.
Similarly, if 9

G)=(+pz+qmp(z), 1=m pP~4¢<0,

where ¢(z) is not divisible by 2? + pz + ¢, the fraction can, by the
repeated application of Lemma II, be written in the form:

g0 _ _AstB_, _AstB el
Gz) (@+pr+qm @ +pr+q) $()
where the last term is a proper fraction in its lowest terms, or zero.

A, and B, cannot both be zero; the later 4’s and B’s are subject to
po restriction.
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Since in each case the degree of ¢(w) is less than that of G(w),
it is olear that sufficient repetitions of the above processes will
finally reduce the original fraction to a sum of partinl fractions,
and the theorem is proved. The representation is unique.

8. Integration of Rational Functions. By a rational function of 2
is meant a fraction, or a so-called “complex fraction,” like

z_¢
3—2w+aw’—:’ :-
_+_
a =

A rational function, R(x), can, therefore, always be reduced to an
ordinary fraction :*
R(z) = £2)

A=)’
and hence it can be represented either as a polynomial or as a proper

fraction or as the sum of a polynomial and a proper fraction.
We can now show that the integral of a rational function:

f R(z) da,

can always be evaluated in terms of the elementary functions. For,
the polynomial part presents no difficulty, and the fractional part
oan be expressed in terms of partial fractions, The latter can be
integrated as follows,

The integrals of the types

dz (4z + B) dz
L 1 3 A —4 0
f(:c—a)"" s=m; x,+m+q7 P’ <y,
are familiar to us. There remain only the integrals
(Ax 4 B) dx

(w,+pw+q)ﬂ! 1<m, pPP—-4¢<0.

# Similarly, & rational function of two or more variables is any expression
that can be put together out of these variables by means of the four species, —
addition, subtraction, muitiplication, and division, —4.e. it is a polynomial, or
» *gimple ’” or ¢ complex ' fraction. It can always be reduced to & polynomial
or an ordinary fraction. Thus, for two variables,

= &1
B(z, v) @z, V),
where g(z, ¥) and G(z, y) are polynomials.
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To deal with these latter we make first the snbstitution of § 4:
t=x+2, a’=q—--§.
Thus the above integral is reduced toa linear combination of the two

integrals:
__tdt __d |
f(ﬁ +a)” fm +a?)

The first of these integrals can be found by the substitution
z=1% 4 at
The second is obtained by a reduction formula:*

a__ _ ¢ 2m—3 dt .
B+a) 2m-—-2)ar@+a®)™! (2m—2)az ]+ a)™!
On replacing ¢ by its value in terms of x this formula reduces
substantially to Formula 71 of Peirce’s Tables.
Thus the evaluation is complete and the theorem is proved.

9. The Integral f R (sin z, cos z)da.

By means of the theorem just established it can be shown that any
rational function of sin # and cos # can be integrated. Make the
substitution

(6§ t=tan§, 2 = 2 tan—t¢, —rLoLlm
2dt
T dr =-2""
hen i3
sina:=2sin§cos§=2tan§cos’§=2ﬂﬂ,
2 2 2 2 sec’lwm
or
@) sinm:l—%_%i, and cosa::ilz-

On substituting these values for X and ¥ in R(X, Y') the result
ia seen to be a rational function of ¢:

R(sin z, cos @) = r(?).
2dt
1+

Hence [ R(sinz, cosz)dz= [r() i.e. the integral of a

rational function of ¢.

* Reduction formuias play an important role {n systematic integration, and
1t is well to treat them as an independent subject. At the present moment the
student needs only § 2, in Chap. II, which he now should read.



20 ! CALCULUB

i
Ezample. Consider the integral
dx
® St la] (3}

a+bcosz’
On making the substitution (1) and reducing, we have:

2dt .
a+b+ (a— )2

There are two cases, according as @ 4+ b and a — b have the same
sign or opposite signs.*

Case 1. 0<‘;+Z=Aﬂ, —r<z<m.

2dt _. 2 at__ 2 ot
ahb+(a—br a—bd) B+ 4 (a—b)A A’

@ fa+zzmsx=(a-'2b)4m_l{—t%}_}.

If @ — b is positive, the formula can be written:

dx 2 _(\/a—b z a+b5>0
5 — O ————tan™ tanZ »
®) a+bcosx Vai— b n a+b 2) {a—b>0.
But this last formula is false when a 4 b and a — b are both negative,
for then

(@) Ele V=R

A form which is general, comprising all integrals which can oceur
under Case I, is the following:

©) de 2 o, Vel-Ptan}z
a+beosz /@@ a+4b
Case 1L o>£;;i:.—_—m, —r B
2dt _. 2 dt__ 1 jet—d
a+b+(a-b a—-bJ -4t (a—bAd “t+ A
® dz 1  jglantz—4

a+bcosm‘(a— b4 Ogta.na}:c+A'
If o + b is positive and a — b, negative, the formula can be written:

*The cases in which ¢ and b are numerically sgual are dealt with directly.
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@) dr _ _ 1 log\/b+a+\/b-ata.n«}z {b+a>0,
a+beosz ~F_af Vbta—Vb—atanjz (b—a>O0.

But this formula is incomplete, failing to include, for example, the
case a =4, b=~ 5. The following form is general : * .

©) ‘/‘ de 1 loga+b+\/b’—a'-‘tan{x
AFbeosz VE_@ a+b-vE @ tan e

EXERCISES

Evaluate the following integrals, using each time the method of
the text, not the final formula. Check by the formula.

1. _dz 7. _dx ., __dw |
54 3cosz 34 5co8z © J4cosz—b
4 _dw B _de . _dx
" J4—5cosz " ] 544sinz " J12sine—13
* dx dx dzx
1. —_— 8. —_— . 9. =
Jl—cosw f1+cos:c s fl—sin:c
: dz dz
0. . 11. —_— .
1 f3—2sinz+cosw f1+sinw+cosz
dz dz
12. . 13. .
fl—sin:v+2cosa: f2—5sinm+3cosz

14, ————M—-—— 15. ———ﬂ’—— 18. _i:u____
cosx—cosa 51n & — Sin 1+4cosacosz

17. Show that

2 m_,b+ata.ntm
de Vat = Vo — P
fa+bsinm— 1 1Ogb—\/b’—az’+uta,ni»:r:

Vii—a b+VbhiE—al+atanis

acoording to which formula gives real results. Obtain formulas for
the exceptional cases.

® Of., however, § 8, footnote. In all onr formulas of integration the inverse
trigonometric functions are restricted to the principal values.
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18. Show that :
dz = 2 mn-xo'f'(“"'b)m*w
a+bcosz+csing /g —p_ ot Vat-HB g

1 lo B+ct—at—~c—(a—btan}zx
VEtE—@ VE+td—a4c+(a—dtan}z

according to which one of these formulas has a meaning. If
neither has a meaning, obtain a formula that does have one.

19. Show that

dz 1 z
fa(l + cos x) + csinm_c—IOE(a+ ch—).

20. Evaluate by the present method

f sec x dx and f csc 2 dz.

21. By the aid of the identity
asinz+bcosz=A4cos(z —~ a),
where A=Va*+¥, sina=a/4, cosa=0b/A,
obtain formulas for the integral of Question 18. '

or

10. Intrgration by Ingenious Devices. Because every rational
funetion ¢f sin« and cos z can be integrated by the method of the
last paragraph, it does not follow that that method is the simplest
one in a given case. There may be an obvious substitution or
reduction which leads at once to the result.

sin z de
Emmpze 1. fm—w'

Here, the numerator is substantially the differential of the de-
nominator: d(a + b 008 7) = — b sin zdz,
and so the substitution
g=a-+bdcosa
leads immediately to the desired evaluation.

Ezample 2. fﬂ;@_"’_.
a+bcosz

» Divide the numerator by the denominator aceording to the
methods of first<year algebra :
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08 & 1 a
o.+hmw b bl boosz)

Thus the integral is reduced to the integral studied in the text.
Ezample 3. f cos? z.de.

Here, 008 zdz = co8* & cos xds = (1 — sin*z)d sin

and so the substitution z = sin z avails.

Ezample 4. fa __dz

3sinz—4dcos®
3einz — 4 cosz = 5(§ sinz — $ cos ).
Let cos a = §, sin e = 4.
Thus « is completely determined, and
3sinz — 4 cosx = 5 sin(x — ).

The integral is hereby reduced to

‘/‘ csc ¢ de.

It is not, however, merely to trigonometic cases that these re-
marks apply. Consider

dAdr
%® + o’

Ezample b,

Here, the method of partial fractions would be absurd, for
d(at + of)= 3a? dx,
and the substitution z =a’ +a? avails.

22 -3 x)de,
Ezample 6. f(—_”"“mzu

Substitute z=2%

The student should now turn back to the paragraph on Integra-
tion by Parta, Introduction to the Calculus, p. 248, and study it
thoughtfully, working the examples afresh, in order to realize both
the possibilities and the limitations of that method.
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EXERCISES
1, [eostzds 2 cosxde
© ]2 —oos% " J7+13sin2
3 sinzcoaxdz' 4 8inx cos w de
) 9—cosz : 4sine + 11
5. sinz-—coszdz‘ s f2 c.osm-3.sinmdz
COBZT — cOB & sin 8 —sinz
7 dx 8 dx .
* J 2sin2z — 3 cos?z © ] A2 cos?x 4 Bsinta
2dxz dz
0 [ B
f30082m—-2 10 fsing_si‘ng

2

2
11. fsin'xdac. 12. fcos‘acdz
1a.fd’- 14.fd‘”- 15./',’1‘"’-
costs cos? J sin*xz
2 dx

dx xdx
g . (B LI L —
‘“‘f. z  Jira f5—3a:2-—:n‘
sm§ .
* det de
9. [Z%. R X .
1 ‘/a._z. 20. =2 21 fe,+e_,

22. f e'de 23, f e * cos8 bxdx. 24, f e~*% gin bz dz.
e* et
25. fz cos x dx 28. fme"’d:r. 27. fe““"'sin xdz.

28. f lﬂgg—’”- 29, f log(a?— o) dz.
logzdz
30. falog\/a’-f-a:*dz. 1. a%‘_—zyz
2. f dz 33. IM 34. fcsc"zdz.
zlogx z

11. The Integral J‘E(sv, V& T 57 + o) dae

The integral of any rational function of » and the square root of
& quadratio polynomial,
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@ y=Va+ bx'4 c2?, c= 0% .
can be evaluated in terms of the elementary functions. For,

@) a+bz+ca:2=c{(w+ ) 4—“”;—"7'—2’—}=c(t=:t.4=),
— b g, dac
where _z+2c and A_:t-——-—-—402 s

the lower sign heing chosen when 4 ac — b* is negative.
There are in all three cases to be distinguished.

Casel: 4ac—b0<0, ¢<O. Here,
y=vV—c VA8,
and the substitution :
t=Asiné (ort=Acos8)
reduces the integral to the form treated in § 9.

Example 1. c< O

f Va+ bz + ez
Here, we must necessarily have 4 ac — b* <0, since otherwise the
radicand would take on no positive values.

t==:v+-—b—, A= ——————-——MG>O t=.Asing;
2¢ —2c
dz = dt = A cos 6d6, Va+bx4cxl=vV —cAcosb;
g _ 1 a—2cz—0b

f\/a+bz+ca:=— Ve V—¢ Vb= fac

The solution could, however, have been abbreviated by writing
the integral in the form:

¢+i
S e

4¢

*If ¢ = 0 and b 3= 0, the same substitution, (1), is applicable, the rationaliza-
tion of the integrand now being immedjate :

V= a + bz, z=!‘—b:—a, dz:-g-lbgl'
and the new variable of integration being y.
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Int p=y—2 g=2—1
Then the equation of the pencil will be:
@ p—M=0 or y— 2=z —1).

A variable line of this pencil cuts the curve in the fixed point 4
and a second, variable point P: (z, y). The coordinates of P are
found in the usual way by eliminating y between (1) and (2):

3) Vitz+ld=Az—1)+2,
142422 =2 -1 +4rz—1) +4,
@ —34+2+22=N(z—1)2+4rz—1).

We know that one root of equation (4) must be z = 1, since every
line (2) goes through the point 4 : (1, 2), and hence it should be
possible to separate out a factor  — 1. It is at once obvious that
this can be done, since

—3+2+42282=(z—1)(22+3).
On dividing (4) through by z—1, we have:

5) 2243=2(r—1)+4x
Hence
~ 344122
6 =247,
The value of y is found from (2) by substituting this value of x:
_4—5a42x
™ y T

Thus 2 and y have both been expressed as rational functions of a
parameter ) ; the conic has been rationalized. Conversely, A can be
expressed rationally in series of the coordinates of P:(x, y), for
from (2) we have 0

—- g——‘- .

The method is general, and can be applied to any coniec, the ver-
tex of the pencil being taken at an arbitrary point on the conie. In
the case of a hyperbola, the pencil may be the lines parallel to an
asymptote,*

*The method of rationalization does not in general apply to algebraie curves,
B(z, y) = 0, of degroe higher than the second. Those curves to which it does
apply are called unicursal.
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‘We can now evaluate the given integral.

el B t4A =2(4—-5r42x0d0
® e-l==2s, de = T

dz 2dx
0 = =hilog(d )\~
a0 f(w-—l)\/1+z+2z= f—5+4;\ Hog(da~5)

=§1084\/1—43§f—55_3'
The General Case:
f(m—p)\/:::-bm-q-cw"’ 0<atbe+ar
can be treated in the same manner. The curve
@ y=Vairtz '

is out by the line =z — p =0 because of the condition of inequality
imposed. It will be convenient to introduce the notation:

J(z) = a + bz 4 cat.

Then * S >0, [fp)=0b+2cp
Cut the curve (1) by the pencil
@) p—Ag=0, or y—Vf(p)=\z~-p).

The computation is parallel to that in the numerical case above
considered. We find :

—=b—cp+ 2Vl — pA VIG) ~ SN+ Vi) X,

T

y=

¢ — A2 c-— A2
am Yot t e — Vi) 4 2[eVi(p) =S (A + Vilp) At]dA,
z—p ’ (e —ny

10’y f L
(x—p) va+ bz + cz?

el 1 VIR VaFE T & = 41 o)z =)= f(p).
V7e) - e=+

where flp)=a+ bp+cp? > 0.

¢ The expression b + 2 ¢p oocurs later in the computation, and can be abbre-
visted as /'(p). No property of the derivative is here involved. It appesrs to
be merely an sccident that the sbbreviation is possible.
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This formula can also be derived from the result of Ex. 2, § 11,
by means of the substitution # —p=1/t. The method is not, how-
ever, so simple as would appear at first sight, since fwo cases must
be distinguished when #® is taken out from under the radical, ac-
cording as ¢t > Q0 or¢ < 0.

Egzample 2. Consider the same integral for the case that the
conic is not cut by the line 2 — p=0. Here, ¢ may be positive or
negative; the conie, 2 hyperbola or an ellipse; but this conic must
cut the axis of # in two points, z=e and z=8. Let e < 8.

To rationalize the conic, choose a pencil of lines with its vertex in
the point (a, 0):

(11) p—-A=0, or y=Az—a)
Suppose that ¢ < 0. Then the conic is an ellipse, and = lies be-
tween ¢ and 8. We have:
a + bz + 2 =(— c)(x — )(8 — =),
where each factor on the right is positive. Thus

V=& — a)(B — 2)= Az — a), — ¢(B — z)= AYZ — a),
aA?— cB _ —o(B— @)\,
BEN T y=—"w=¢
,_ - 2¢(B — a)rdr
A= “Z%Tﬂ‘ o = c((xz—a::)': 3

dz —2dA
12 f(w—p)\/a+ba:+m#= (e —pAt— (B —p)

Here, « — p and 8 — p are both positive or both negative, and the
value of the last integral is

SN=G V=G

'We have, then, finally: :

dz
(13)<f(=---4t')“/¢t+bav+ca:2 .
B_'z_____m_,(j.-a' a4 oz +
V—5p) v—=flpy *T¢

Jp)=a+bp+ cp* < 0.
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If ¢ > 0, the conic is & hyperbola. We have:
a 4 bz 4 cx? = ¢(z — a)(z — A),
where the parentheses are either both positive or both negative.
The formal work proceeds as before, and we arrive at the integral
(12). Here, however, « — p and 8 — p have opposite signs, but ¢ is
positive. Hence the subsequent work is unchanged, and formula
(13) covers this case, also.

If p = a or f3, the integration can be effected directly by the above
substitution. The result is algebraic.

dx
xample 3. »P—4g<.
& f(22+pz+q)\/a+bz+cx” ?

If the roots of the radicand are real, the rationalization used in
Example 2 is expedient. The computation can be carried through
with elegance ; but the final result is a complicated formula.

When the roots of the radicand are imaginary, the problem is
still more complex. A method of treatment which applies to both
cases consists in making a fractional linear transformation of &
whereby the linear term in each quadratic polynomial is eliminated.*
This can be done piecemeal. First reduce the radicand to the form
1422 dx

(2 +pz+q) VIt 22
Next, make the linear transformation :

z+h t—-h
1—ha'

where k is determined by the equation :
P2+ 2(1 —@)h—p=0.

t =

Then
A+ B+ _ L+ mnde
1+aha (1 + ht)? A+’
A+ Be
a? -
tprtg A+ ht)?’
A=k—-ph+g>0, B=1+ph +qh*>0;
dz ——=V1 4+ A i(1+kt_)_dL__
(@ +pz+ Vit 4+ B)Vite

®Ct. Chap. IX, § 4.
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where the lower sign is to be chosen in case 1+ A¢ is a nmhve
quantity.
We are thus led (on replacing ¢ by z) to the integrals :
zdz

f pen—— ) A>0, B>O0.
(4 + Ba?)V1 + 2? (4 + Ba) V1 + o
The integrands can be rationalized as follows, Cut the conic

by a pencil of lines parallel to an asymptote:
(14) “ y=—az+Ar

There is no difficulty in carrying through the details of the work,
but the final result is in form less simple than that obtained by a
device. It is obvious that the second integral can be readily evalu-
ated by means of the substitution: z=+v1+ 2% And now the
first integral can be reduced to the second by the transformation:

y=1/z

The method applies to the more general case that the radicand is
C + Dz*, where C and D are any numbers not both negative, and
neither zero. The result is as follows: *

dx 1./ 4 BC— 4D
15 = — tan—! —— e
‘ )f (A+Bat)vVOt Dzt AVBC—4D (” A(0+Dw2)>’

or = LA 10g YO+ D& +2v/(AD - BO)/A,

2AVAD-BC ° VO D2 —zV (4D — BO)/4

16 xdx =1 B -1 B(O+ W)’
e f(A+B¢z)\/(;+ Dat B\/AD -—BO’mn AD — BC

or = 1\/ B 1, YO¥ D2t —V(BO— 4D)/B,
2BVBC— 4D ° /0 D# +/(BO - AD)/B

* Formulas 229, 230 of Peirce’s T'ables are simpler than these ; but the tan—1
formulas there tabulated are wrong except under restrictions not there stated.
Thus the first formnla, 229, is true when a’ > 0; but when a' < 0, there should
be & — sign before tan-1. Again, no one of the formulas 220 ¢overs the case:

a' <0, a'c — ac’ < 0.
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EXERCISES

1. By means of the rationalization set forth in Example 3, (14),
when ¢>0, namely, y=—zVc+), obtain Formula 160 of the
Tables:

U SN S VaF ot B+ ave4+ 2\
f\/a+bz+cx’ Ve g( te s c..'.2\/5

2. Use the other asymptote, and show that the result thus ob-
tained reduces to the above.

3. Prove the following identities for the principal values of the
functions entering.

(@) tan=— 1y = Sin—!-\/if(.]],i; —0o U< 4 w;
®) 2 tan-tu = tant 2 —l<u<l,

1
(© tan~ly = COS_IW:;; 0=u< + .

4. By means of the rationalization illustrated in Example 2

evaluate the integral
dz 1—z
—_—. Ans. — 2 tan™ .
f Vi—Zz—a "N:¥3

5. Reduce the answer in Question 4 to the form given by the
Tables, Formula 161.
8. Compute the integral:

dx
8+ 122+ 52) V6 +6x 4 22
7. Show that the substitution of § 9,

).=tang,

whereby sin 6 and cos 8 fook on the forms
23 1
147 14
amounts in substance to the rationalization of the circle
#4+y=l
by means of the pencil of lines through the point (— 1, 0), namely :
Y= A(x4-1).

8in 6 =
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. dz = T .
8. Era.luabo.‘/;zﬂp)‘/m, p=aorf.

9. Give all the details of the proof of Formulas (15), (16), con-
sidering, when necessary, the case that @ < 0.

13. Conclusion; the Actual Computation. Any rational function
R(z, y) can be written in the form:

R(=z
@)= G(w, v’
where g(w, y) and G(z, y) are polynomials. If
=vVa + bx 4+ ca?,

the even powers of y are polynomials in # and can be replaced by
these values, The odd powers can be written each as the product of
y by an even power, and the latter factor can be replaced by a poly-
nomial. Thus R reduces to the form:
A(2)+ y B(2)
Rz, y)=

where A(z), . . . , D(x) are polynomials.

The denominator can be rationalized in the usual way by multi-
plying numerator and denominator by C' — yD. Thus

R(z, y)=p(2)+ yo(2),
where p(%), o(z) are rational functions. Finally we can write :

R, ¥)= p(@)+ 7(2) - 11,
where 7 is rational,
Turning now to the integration of R:

f R(z, y) do = f ot [,

we have first the integral of a rational function, and the method of
partial fractions, as above set forth, leads to the desired evaluation.
In the second integral, let =(z) be expressed in terms of partial
fractions. Woe are thus led to integrals of the following types:

./'Mw f(m—p)" f(w*+§+q)*y’ f(w“+;:iq)“v'

‘These integrals are computed by the aid of B.eduotlon Formulu,
of. Chap. IL.
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14. Integration by Parts. The method is contained in the formuls

1) fudv = uy —f'vdu;

Introduction to the Calculus, p. 243. The cases to which the method
applies form a restricted class, but one which, in an extended study
of integration, must be recognized.

The method is best studied through typical examples like those
of the paragraph to which teference has been made, and the student
should now review that paragraph. There is little point in multi-
plying examples here, since such examples would carry with them
the direction to use this method, and the whole difficulty lies in the
fact that, in practice, the student is not told when to use the method.
For this reason he should strive to detect those integrals in the mis-
cellaneous list at the end of the chapter (cf. also § 10) which are best
evaluated in this manner.* Perhaps a single example may be useful.

Ezample. To evaluate the integral

I.—_fzmn-l"_'ﬂ'dm
al
Let u = tan-1 %"T’i’, dv = zda,

the object being to eliminate the transcendental function through
differentiation. Then
2a'zdx _ =
du:a_—_——‘+(a2+x2)” 'v_.z,
and we have by (1):
_# attdt Pdo
T=g “fa‘+<a*+w’)'

To evaluate the latter integral, let y = a?:

ydy _ _ aat 4 .
Sarrm s e et ) a3

# The reduction formulas of Chap. II are frequently presented as illustrations
of the method ; but they are spurious illustrations, since the direct manner of
srriving at them is through the differential formula

d(uv) = udv4vdu,
and not through its integral form, (1), of the text.
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Hence, finally,
@+ d+at, 00+ al X
fwta.n 112 gy o P2 S gt £ Tlog [t + (o + 2]

The student may like to evaluaté
f Btan12 2 4
a?

EXERCISES ON CHAPTER |

Evaluate the following integrals, using the methods, but not the
formulas, developed in the text.

1 4%._—— 2. & _—e——')f—‘ii”. 38, @ cos z¢ dz.
Vat — .t e

. ; 1
4 fsmg-;r\/sf dds f2 cosex—sinfr, o [,
a4+ B a?

Vs

e dx T dx
7. . . A ) ——
fe'+e“ 8 f\l2 +3zdm 9 kf:cloga:2

* de cos 8 dé
10. — 11, . . ——
j5—sm20 1 fa:cot’mdm 12 fcos20
zdr

18. IW. 14. flog(1+m+:v2)dz.
16. fﬁ- 16. fz’ tan! x dz. 17. f(Tw_‘—-izx_)'.
O frew e S P

20. f“i“"' gdz. 21. fe"’(?w—3m')dx.

22. f cos® 4 de. 23. f ztanwatde. 24 f logzde,
x

25. sinéd — cos ,
f 1 sin6 1 000 adﬂ. 28. 81n px cos gx dz.

(1+acosé)ds ’
= (1 +a?cos?d +1 ”Q'J(“+¢)10g(z+\/a’—x=)d,a-.

0. { sin mf sinnd d4. 1. Va'-+b=+0a'sin'am
C poon
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38.

38.

4

[+

43.

45

49.

b

-

53

54
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. [TEERT g a3, -—ﬁ— 84. e*sin?zrda.
14 cose sin*$ ¢
csclz de. 38, ze~ Veds, 37. __dx |
14+Tcosz
1+tane tan z dx * ginazdz
——dx. 39. —_ . ———
f cos?zx dz. 3 1 —tan’z 40 Jsin (a+ )

. f (a2 4 2%) log (a? + 2?) dz. 42. f (reosf —a)dr
[a®— 2 arcos § + r’]‘

(@ —rHdf 44, [ e*sin(nt —y)dt.
a? —2arcosf + r?

115 + asdx 46 ‘/‘}Og\/]. +272d2. 47 f dz

") Pt e A —ay evVit @
’ dx

z 50. —_—

face“ €08 bx dx. ./\/a:+\/1—a:
Vitesvi-zg, g, f dz .
Vivz—-vV1i—=z —-2)Vet—42+3

. Compute the value of the definite integral
it
dz
f e Ans. 11071

ol

Compute the value of the definite integral

2
dz

ST Eooss Ans.  0.27465.



CHAPTER 1I
REDUCTION FORMULAS

1. The Integral f sin® 2 cos™ z da.

‘We begin by taking the differential of a function of the same
type as the integrand :
(1) d(sinz cose z)= vy sin" 1z cosr* x dz — p 8in**! z cos* 2z dz.

If we integrate each side of this equation, we obtain a relation
petween the integrals

f sin"i z costl g dz, j sinv* g cose1z dz.

‘Thus if we wished, in the given integral, to increase n and decrease
m {or vice versa), we could effect the result. But this is a very
special and relatively unimportant case. It does not enable us to
change one of the exponents without changing the other. We are
led, therefore, to make a trigonometrie reduction. Write

cos#tl p = co8*~1 2 co82x = cosw~1x — coss~l i sin? @,
Then equation (1) becomes :
(2) d(sin"x cos#z)=vein"'z coss 1z dx — (u + v) sin** z cos1z dar,

On integrating this equation, we obtain a formula whereby the
exponent of the cosine factor is unchanged, but the exponent of the
sine factor is changed by 2. Let

Then v+l=mn, p—1=m.

sin™1x cog™g .
a(n—l)fsin"’z cos*zdx —(n 4+ m) | sin"z cos™ w da,

3 sin"x cos™ z dz

=_sin""zeoﬂ"“'la: n—1
n+4m n+m,

+

sin*22 cos™ x dn
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. In partieular we obtain on setting m =0:
4 fsin"md:v=—smn-lwc°”+"_lfsin"-’zdz.
n n
Thus for n =2, 4 we have:
fsin’wdm=—\}sinzcos=+\}m;

fsin‘mdmaz-—}s'm'z cosz+ 4 | sin?zdx

=—}sintzcosz — §sinzcosxr 4§z,

and by setting » = 6 the student can now verify the result of Ex. 5
in Chap. IX, § 8, of the Introduction to the Calculus.

We must warn the student, however, against the stupidity of
appdying any of these reduction formulas when there is an obvious
short cut, Thus

fsin‘:cdx:—.-—.j (1 — cos’z)d cos z = - cos & 4 } cos’z,

and to use Formula (4), n =3, to evaluate this integral would be
much like multiplying 700 and 800 together by logarithms.

If » is negative, we wish to increase it, and so Formulas (3) and
(4) should be used backwards, i.e. solved for the integral on the
right-hand side. A neater form for the result is obtained by going
back to (2) and setting

v—=1=w—n, p—1=m:
®) cos™xdx cos™ g +n—m—2 cos”zdr
sin" o (n — 1)sin" g n—1 sin"2g
On setting m = 0, we have: )
de co8 % n—2 dz
6 =— _ .
® sin® 2 (n — 1)sin™? :c+ n— lfsm""x
If in (5) » and m are equal, there is a simpler formula. Here,
Q08°2 . oot = cot™?a (csc?z — 1),
sin"x
Hence
) fcot"zdz::-—-—m fcot"”md:o

In all these formulas, » and m may be fractional or incommen-
turable, But in' that case the given integral cannot in general be
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evaluated, and so the formulas are important chiefly in the cass that
n and m are integers.

Formula (2) and the corresponding integral relation are always
true, In passing, however, to the later formulas, a division has
. taken place, and it is tacitly assumed that the divisor is not zero.
If it were, the resulting formula would have no meaning. Thus no
danger can arise, for a formula that has no meaning cannot lead to
a wrong result. Whenever one of these formulas has a meaning,
it is correct.

EXERCISES
Obtain the following reduction formulas.

. in*+t m—1 _ .
1. fsln"zcos"mdz=sm ZCOST T M 1fsm"aacosﬂwdz.

m-4n m+4n .
1 m—1
2. fcos“zdz=smzc°s ‘°+m— lfcos"‘ﬂa;d:c.
m m

s sin"wde __ sin** m—n—2 (sin"zdr
cos™x (m-—1)cos™ iz m—1 cos™ 2x

4 de  _ sin +m—-2 dz
" Jeosmz (m—1)cos™ 'z  m~1,J cos™ 2

5. fta.n":cdm *'“""” fta.n"‘!zdm

6. Obtain the formula of Question 2 directly by starting with
d(sin z cos* ).
7. Obtain the formula of Question 4 in a similar manner.

8. Check the formulas of the Exercises against the corresponding
formulas of the text by setting =} —y.

8. Obtain the formula of Question § by starting with d tan* % and
masking a suitable trigonometric reduction of the result.

10. Evaluate the following integrals:
(a) fcos‘a:dw. () fooa'zdz. (¢) fsinxoos’wdm

umaxda:

@ tos'e @ oos'w 0 rry
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dz
3. The Integral fm-

It would be a false analogy with the example of the preceding
paragraph to start with d{a? + «?)™", since the result would be but a
single term, and that not yielding an integral of useful type. We
need a product, and Exercises 6 and 7 in § 1 suggest the plan: *

08 dfz(a? + 2)™™] = (a* + «*) ™ dxr — 2m a3 (0* + 2%) ™ d.
In the last term, write the factor 2? in the form:
2 =(a? + x%)— at.
Thus
@ dz(a*+ a)™]=(1 — 2m){a® + 25 " dx + 2maX(a? + 2%)~1dz.
It is now clear that, on setting m +1=mn and integrating, we
shall have a reduction formula worth while, namely

x 2n —
@) f @+ dr 2mDa@+ A Zn— D)@ f (@ + z’)""l

It is this formula which occupies a pivotal position in the proof
that every rational function can be integrated.

EXERCISE

In Formula (3) set x =a tand. Hence show how (3) can be de-
duced from the formula of Exercise 2, § 1.

" do
3. Th Integrl-l st ——
° f\/a+b:c+cm”

Let y=vVa+ bo+ ca?
and take d(z™y):
@ d(amy) = mamty dy + G0 F DT LA g,

mz"Y(a + bx 4 cz?)
y

ma*ly =

# There is no inductive trestment possible In this part of integration. Imagi-
nation, resourcefulness, and the power of keen observation are the qualities
reguired.
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Henoe
@  demy)= ma”"'T'dz-;-(m + *)b?dm'{-(m + 1)c5l;,fdm

Let m 4+ 1=n, and integrate. Thus we obtain the reduction for-

mula:
@ wrdr o™ty 2n—lb e ids n—la m"‘“dz
) f y e f

By taking d(y/(z — p)™) and proceeding in a similar manner we
obtain the reduction formulas

dz y _2n—8S'(p) dx
O P e A AICE it ¥ ol ke o

_n—=2 ¢ f dv
n—1f(p)) @—p)%
Slp)=a-+bp+cp?=0.

5 e y 2n—-2 c de ,
® feEm e noire) e
fp)=0, J(p)= 0.

Reduction formulas for the integrals

dz zdz
6 {—F L. a—— ~4g<0,
® f(w’+m+9)"y .f(w‘+1>w+9)"y’ Pt
can be obtained by considering simultanecusly

Ay +pz+9™]  and  dfay(e +pz+ )

EXERCISES
1. Obtain a reduction formula for »
= dx
f Vatba
2. Give the details of obtaining the reduction formulas (4) and (5).
8. Obtain a reduction formula for

dz
f (#* + V@ +

4. Obtain redustion formulas for the integrals ().
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5. Starting with d{(Az + x)X™}, where X =a + bz + cz* and
A, u are undetermined constants, show how, by a suitable choice of
A, p, reduction formulas may be obtained for the integrals

d zdz,
X’ X

8. Develop reduction formulas for

fw"sina:dz and faf' cos zdas.



CHAPTER III

DOUBLE INTEGRALS
1. The Double Integral* The definite integral of a function of a

gingle variable, »
jf(m) da,

was defined as follows; Introduction to the Calculus, Chap, 12, § 3.
The interval a < < b was divided up into n parts by the points
Xy = @, Xy, --+, €,1, &, =b. The function f(x), which was required
to be continuous throughout this interval, was formed for each of
the points «f, ), -+, ), where | is an arbitrary point of the k-th sub-
interval,
Ta ST S T,

and the products,

S (=) Az, Ar, = — T,
were added :

2, /(@) 02, = f (@) Ay + F (&) Aza + -+ +f(2h) A

=1
The limit approached by this sum as n increases without limit, the
longest Az, approaching 0, was defined as the defintte integral of f(z)

Jromatobd:

* The student who is approaching this subject for the first time should study
carefully §§ 1-5. He may then choose between §§ 6, 7, 8, for an intensive
study of any one of these three paragraphs will serve the present purpose.

He should next study §§ 9, 10 with attention to every detail, and master
thoroughly § 10. He can then take §§ 11, 12, 18 in any order. It is more im-
portant that he do thoroughly one or two of these paragraphs than that he cover
all three superficially.

He will do well to leave the chapter at this point and turn to the next
chapter, that on Triple Integrals. The treatment here brings out strongly the
geomstric side of the subject, and is not encumbered by examples which present
analytical difficulties. But the geometry involved in determining the limits of
integration he must mastgr. He can then turn back to his double integrals and,
after a careful review of §§ 8 and 10, take the remainder of the chapter in any
arder, -

44
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® tim 3, 160 Az.aff(z) da.

The foregoing conception, or definition, can be extended to funec-
tions of two variables as follows. Let f(2, y) be a continuous funo-
tion of the two independent variables =z, y
throughout a finite region 8 of the (x, y)-plane.
Let 8 be divided in any manner into n sub-
regions, of area AS;, AS,, :-+, AS,, which to-
gether just fill out the region 8. Let (z,, v,)
be a point chosen arbitrarily within or on the
boundary of the k-th region. Form the sum

(2> Zf(mk, yk)ASkaf(ml: yl)ASl +f(932: yz)ASz + e +f(zn7 y-)ASn'
k=l

The limit approached by this sum as n increases without limit, the
greatest diameter of any AS, approaching 0, 1s defined as the double
integral of f(zx, y), extended over the region S:

3) . 1'1-12 i:f(“’k: ¥) AS, =fff(“’: y)ds.

A=l

The form of the sub-regions is wholly arbitrary. Thus they may
be taken as rectangles (¢f. Fig. 23, § 17); or as the four-sided figures
of Fig. 24, § 18. In these cases, there will in general be irregular
sub-regions along the boundary, consisting of pieces of the rectangles,
etc. But it is easily seen (cf. § 2) that the contribution to the sum
arising from all such regions is small, and approaches 0 as its limit.
Hence such regions may be wholly suppressed; or they may be
replaced each by the complete rectangle, ete.; or some may be sup-
pressed and others completed. The value of the limit of the sum
will be the same in all cases.

EXERCISE
Extend the conception to space, starting out with a three-dimen-
sional region, V, and a funetion, f(z, ¥, 2), continuous throughout ¥.
The result is the triple integral,

S frnnar

Give all the details of the definition.
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2. (Geometrical Interpretation. Law of the Mean. If we plot
the surface
’ 4) g=f(z, ¥)
and consider the cylinder standing on the
region 8, the volume, V, of so much of this
cylinder as is cut off by the (z, y)-plane and
the surface (4) represents precisely the
double integral :

®  v= f f 7, 4) dS.

For, each term f(2,, ¥,) AS, in the sum (2) is the volume of the slender
cylinder which stands on the k-th subregion and reaches up to a
point of the surface (4) lying in this cylinder. Obviously, the sum
of all these » volumes differs but slightly from the volume ¥; and
the discrepancy grows smaller and smaller and approaches 0 as its
limit, when n increases without limit.*

Thus the analogue of the definite integral (1), interpreted as the
area under the curve y = f(x), is here the definite integral (3), inter-
preted as the volume under the surface z = f(z, y).

We have tacitly assumed that f(, y) is positive. If f(z, y) is
negative, the column lies below the (z, y)-plane, and the double inte-
gral is still numerically equal to the volume of

the column, but is now seen to be negative. If, v
finally, f(=, y) is positive in some parts of 8 and
negative in others, the double integral is seen .

to be equal to the algebraic sum of the volumes @
of those parts of the column which lie above the
(z, y)-plane, taken positively, and those parts which lie below this
plane, taken negatively.f

Law of the Mean. It is clear that the volume, V, of the column is
the same as that of a eylindrical column of like cross-section and of
altitude Z intermediate between the smallest and the largest values
of f(z, ¥) in 8. The function f takes on this value in any one of an

* A suggestive model of the whole set of glender columns is found in the
minsralogical specimens of stibnite and tourmaline.

t We nre tacitly restrioling ourselves to the case —suficiently general for the
needs of practice — that the number of parts in each class is finite, Otherwise,
& limiting process would be necessary.
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infinite number of suitably chosen points, (¢, %), in §, and thus

© f (@ )48 = (&, ) 4,

where 4 denotes the area of 8. This theorem is known as the Law
of the Mean.

3. Computation of the Volume V by the Iterated Integral. We
have learned how to compute all sorts of irregmlar volumes by the
method of slicing and the application of the definite integral of a
function of a single variable.* The method may be formulated
generally for a solid of any shape. As-
sume a line in space, whose direction is
taken at pleasute, and cut the solid by a
variable plane perpendicular to this line;
cf. Fig. 5. Denote the distance of an ar-
bitrary point on the line from a fixed
point of the line by . The area of:the
cross-section made by the above plane is
a function of z, which we will denote by
A(x), or simply A. Let the minimum =z
corresponding to one of the above planes
be = a, the maximum, z=>5. Divide the interval from a to b into
n equal parts by the points Zy=a, &), =+, . = b and pass planes
through these points perpendicular to the line. Then the volume
in question is given approximately by the sum:

A(z)Az + A()Az + - + A(@,)A%
and the limit of this sum, when n becomes infinite, is exactly the
volume sought:

1) V=jAdz.

Ezample. To compute the volume of the ellipsoid :

Lo AT
w+w+a )

Here the cross-section made by an arbitrary plane z=go' is the
o a

* The student will do well to work again at this stage a number of the prob-
Jews on volumes in the Fatrodustion lo the Calculus, pp. $10-328,
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Its semisxes have the lengths b\/l - 0\/1 — 7

and hence its area is, the accents heing snppresaed :

Aarbc(l _1’).
a!

" The volume V¥ is, therefore,

V=rbcj<1—5:—;)dw=rbc( —-g%)\:.=trabc.

It is possible to check this formula by setting a=b=0¢. We
_then have a sphere of radius B = a, and its volume is V' = §xa?.

. The Volume, V,of § 2. To compute
this volume, we cut the column by an
arbitrary plane, = ', and determine

4 the area, 4, of this cross-section. Now

0 - £ A4 is simply the area under the curve
ﬁ z=f(z', ) (#', constant)

Y between the ordinates corresponding

Fia. 6 to the abscissas y=Y, and y= Y.

Hence

=Jf(z's ) dy.

Dropping the accent, which has now served its A s
purpose, we have: .
4

@ A@)= J (@ 9) d, ,

"Yl "Y.
. Fia. 7
whére we must remember that x is constant, y

being the variable of integration. The limits of integration, ¥, and
Y,, are functions of . If the equation of

9 =’ = the lower boundary of § be written in the
¥ .
form: ¥ = do2),
s then ¥ = ¢y(#). And similarly, if
¥ = di(2)
b be the equation of the upper boundary,

Fia 8 then ¥; = (o).
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It remains only to integrate 4 with respect to x between the
limits #=a and x=b, where o is the smallest abscissa that any
point in 8 has, and b is the largest. We thus obtain;

V=jA(a:) dz.

This last integral is commonly written in either of the forms: *

Vo

® f i f f@y)dy  or f J (% v) dyda.

It is called the iterated integral of f(z, y) (not the double integral;
the latter has been explained in § 1), since it is the result of two or-
dinary integrations performed in succession.

Reversal of the Order of the Integrations. Instead of integrating
first with regard to y and then with regard to =, we might have re-
versed the order, integrating first with regard toz. We should thus
obtain the formula :

B I
@) V= f ay J (@, ) da.

The student should reproduce Fig. 6, except for the intersection
of the plane z =« with the solid. He should then draw the in-
tersection of the plane y = y', and formulate the area of the cross-
section as an integral, constructing the figures which correspond to
Figs. 7, 8. TFinally, he should make clear to himself how Formula
(1) applies in the present case, y here playing
the rdle of the z of that formula. Thus equa- 4 p
tion (4) results.

It may happen that the boundary of §is D .
cut by some parallels to the axis of y in more g} .
than two points, as in Fig. 9. In that case, Fie. 9

# Another form sometimes employed is to be avoided, namely :
A

f f (=, v) dz dy.

The second form given in the text is to be thought of as an abbreviation for

| ) j{ff(x. v)dv}dz-
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let * § be cut np into a namber of regions, each of which is of 'the
typo considered in the svaluation of ¥ by meauns of the iterated in-
tegral (3). Then the portion of ¥ which stands on any one of these
regions can be evaluated by (3) and the results added.

4. The Fundamental Theorem of the Integral Caloulus. The defi-
nition of the double integral, § 1:

f @ ¥)ds,

is analytic, 4.e. it is numerical, as opposed to geometrical. The in.
finitegimals f(x,, y,) AS, are numbers, and the limit of their sum is
& number,

Likewise, the iterated integral,

j dz j ;’(w, y)ay,

is analytic ; it is a number,
Each of these numbers is equal to the number which is the meas
ure of the volume, ¥, bounded by the surface of § 2:

2= f(z, y).
Hence these nwmbers are equal to each other, and thus we ob-
tain, by the aid of geometry, a theorem of analyeis, whereby an
important limit is evaluated.t It may be stated as follows.

FunpaMeNTAL TuEOREM OF THE INTEGRAL Cavrcurus. Let
J(z, y) be a continuous function of v and y throughout a region S of
the (z, y)-plane. Divide this region wp into n pieces of area AS,, AS,,
ses, AS, and form the sum :

f(zll yl) AS]» +f(w2’ y!) ASZ + e +f(mn) yn) A’Sn!
where (x,, ) it any point of the k-th sub-region. If n now be allowed

to increase without limit, the mazimum diameter of any sub-region
approaching 0 as its lmit, this sum will approach @ limit, namely, the

double integral
f (2, 9 d8;
8

# More precissly, we restrict ourselves to regions § which have this property.

t Compare the corresponding procedure in the Introduction to the Caleulus,
Chap. 12, § 3, whersby two expressions for the area under a ocurve were equated
to sach other,
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wnd the value of the limit is given by the iterated integral,

» n 8 X
fda:ff(% Wy or fdysz(w, y) dz,

where the limits of integration are determined as set forth in § 3.
Eazxpressed as a formula. the theorem is as follows:

fff(z,y)d3=fdzjf(w, y)dy=jdyjr}(w.y)d¢~

The abbreviated notation

f f(z, y) dedy

may mean either the double integral or the iterated integral. This
notation should be used only when it is explicitly stated, or when
it is clear from the context, which integral is meant.

The rdle which the Fundamental Theorem plays in the applica-
tions of the calculus is the following. The physical problems of
determining masses, centres of gravity, moments of inertia, fluid
pressures, attractions, etc., lead each time to a formulation which in.
volves a double integral. The computation of the double integral
can be performed by aid of the Fundamental Theorem.

5. Volumes by Double Imtegration. We have jormulated the
volume of a column standing on a plane region 8 and capped by
the surface z = f(z, y) by means of the double integral:

o)) V= f 2d8.

And we have learned how to compute this volume by means of the
iterated integral: n

@ V= jdz J zdy.

The present paragraph is devoted to examples illustrating the
method.
Let it be required to compute the volume cut off from the parabo-
loid :
=1-Z_F
® =1-17%
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by the (z, y)-plane. Sinoe the surface is obviously symmetric with
respect both to the (, 2) and the (y, 2)-plane, it is sufficient to com-
pute the part of the volume that lies in the
first octant, and then multiply the result
by 4. This volume, ¥, is expressed by the
double integral (1), extended over the sur-
face S cut out of the first quadrant in the
(=, y)-plane by the ellipse

Fia. 10 (4) 0=1—-£s_!’..

To evaluate this double integral by means of the iterated integral
(2), we cut the region § by the line # = «’ and consider z as a funo-
tion of y alone along this line. Thus

n r
= ((1-=_2
J zdy f 1 1 92) dy,

where ™ .= ¥, is the largest value y can have along the segment in
questio.. This value is the positive ordinate of the ellipse (4) cor-
responding to z =2’:

0=1—%'2—%3, Y=§vi—-a2
Thus
(fy_ 2 _gt o P R
X
—— —_ . = __,.____..Y
Jl ) Q)dy (1 4)"’ 27|, {1 4 27}

= }(4 — 2},
Hence, dropping the accent, we have:

j(1—§-%’)dy=ﬂ4—m!)t

The second integration, with respect to z, is from the smallest 2
of any point in 8, bere 0, to the largest z, here 2. From the Tables,
No. 137, we have:

gf(‘z :v')da;--——[(4 a,e)!+emf4_;z+z4sm-l°’ -*,,

:tdwthﬁtatalvclumem3f=9424&
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EXERCISES
1. Work the problem of the text by means of the other form of
the iterated integral, § 3, (4).
3. If the region § is a right triangle with its vertices at (0, 0),
(3, 0), (3, 2), and if the surface z = f(z, y) is a plane whose intercepts
on the axes are each 9, show that 7' = 19.

8. A round hole of radius unity is bored through the solid of
Fig. 10, the axis of the hole being the axis of z. Find the volume
removed.

4. Compute the volume of a cylindrical column standing on the
area common to the two parabolas
z =1y, y=a?
as base and cut off by the surface
z2=12 4+ y — a2
5. Work Example 3, integrating in the other order.
6. The same for Example 4.

6. Mass of a Lamina of Variable Density.* Consider a plane
lamina** of variable density, p. We assume that p is a continuous
function of (z, y):

@) p=r(29).

To find the mass of the lamina, divide the latter into n pieces and
denote the area of the k-th piece by AS,. Then the mass of this
piece will be given by the equation:

@ AM, =p,A8,
where p, denotes the average density for the piece. Moreover,
G PSP S Py

where p, and p; denote respectively the least and the greatest
values of p in the sub-region. The function f(z, y), being continu-
ous, takes on any intermediate value, as p,, in a suitably chosen
point (z,, y,) of the sub-region.*** Hence

* Cf, foot-note, § 1, p. 44.

#8 The conception of a lamina and the relations (2) and (8) below are set
forth in the Introduction o the Calculus, Chap. XII, § 10.

#a% In general, there will be a curve of such pointa (,, ;). If, in particular,
¢ is constant, then p), 5; and pY all coincide, and any point whatever of the

sub-region may be taken as (i, vi)-

"
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4) M= g AM, = gf(xn %) AS,.

Now let n increase without limit, the maximum diameter of any
sub-region approaching 0 as its limit. Then, by definition,

tim 3 76e 1085, = [ [ 760 8.

Hence we have the mass of the lamina expressed, or formulated, as
a dounble integral :

®) M=ff,,ds.

If, in particular, the density is constant, then
M= pA4,
where .4 denotes the area of the lamina.

Ezample. To find the mass of a square lamina whose density is
proportional to the square of the distance from one corner.

Let the origin of coordinates be taken at that corner, and let the
square lie in the first quadrant. Then

p=c(@®+),

M=cff(m! + ) d8S.

The double integral is evaluated by means of the iterated

integral: - 13
ff(w’+y’)dS=def(m’+y')d-'c=%“‘-

Henoce M= §ca'.

and

EXERCISES
Find the mass of each of the following laminas :
1. A right triangle, whose density is proportional to the square of
the distance from an acute angle. Ans, 4y c ab(a® 4 3 b*).

2. The same, if the density is proportional to the square of the
distance from the right angle. Anas. fycab (a® + %),
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8. A semicircle, whose density is proportional to the distance from
the bounding diameter.

4. A right triangle, whose density is proportional to the distance
from one leg.

5. The same if the density is proportional to the distance from
the hypotenuse.

8. The segment of a parabola cut off by the latus rectum, if the
density is proportional to the square of the distance from the focus,

7. The same, if the density is proportional to the distance from
the latus rectum.

8. At what distance from the origin are the points of the square
treated in the example of the text, at which the density is equal to
the average density of the lamina ? Ans. a V.

7. Centre of Gravity of & Lamina. To find the abscissa, &, of the
centre of gravity, @, of a lamina, divide the latter as before into n
pieces and concentrate the mass of each piece at its centre of gravity,
whose coordinates we will denote by (x,, y,). Then, by §6 and the
Introduction to the Calculus, Chap. XII, § 6,

EaﬁASI + z?ﬁ!AS2 + e+ annASn,
M
If, in particular, the density is constant, M = p4, and
= A8, + 2 AS, 4 -0 + 2 AS,
Z= .
A

Let n increase without limit, the maximum diameter of any sub-

region approaching zero as its limit. Then

Hm [#,A8, + % A8y + w4 z,A8,] = fzd&
2

Bince % and 4 do not change with n, we have:
ffwdﬂ i
B e
® =ttt

In this case & is often spoken of as the centre of gravity of the
plane area, S.

If p is variable, but continuous, we can still proceed as before;
but
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(2) ’ 132'[51”1451 +F2MASI+ b +F.w.45-]

is no longer by definition a double integral, since the points of the
k-th sub-region, in which p takes on the value p,, are not seen to
contain any one whose abscissa is equal to that of the centre of
gravity of this sub-region, namely, z,, Nevertheless, this limit
suggests the definite integral

(3) hm[pla:, A8, + p2 288 + 0 + p,2,A8,] = fpzdS

where p, is the value of p in the centre of gra,vn:y (z,, vi) of the
%-th sub-region.

That the limits (2) and (3) are equal, follows from Duhamel’s
Theorem, Introduction to the Calculus, Chap. XII, § 8. For, on
getting,

a, = p, 7, &S, B = pi 2 AS,,
we have B € and lim 26 =1,
L Ll /"

Thus we obtain the general formula
f f pxdS
B8 .

@ i

Ezample. To find the centre of gravity of a triangle.
Let the axes be chosen as in the figure, and let the equations of

the sides through the origin be:

¥ Y= A, Y=M3, A1)<)‘l'
4 h | Then we have: . .
5 :’i!- ff:cdS=Jdmfmdy,
Fa. 11 § o
where Y, = A, Y, =M=
T
Hence f zdy = ay =(A1 A a2,
. ' A
3 ¥

fd-szdy = [ (M — N)arde =(7 — “v)z;:
° .

A

s
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Sines Ak — Ah = I, weyhave finally,

ffde=§m=;

and since 4 = } lh, we see that
T=4h

But O was any vertex, and hence we have the result that the
centre of gravity of a triangle lies on a line which is twice as far
from a vertex as from the opposite side. The centre of gravity
must, therefore, be at the intersection of the medians.

The advantage of the solution by double integrals is its directness.
It was not necessary first to develop a special formula to fit this
case, a8 was done in the Iniroduction, Chap. XII, § 10, Exs. 6, 7.

EXERCISES

Find the centre of gravity of each of the following laminas:
1. The lamina of the example studied in the text of § 6.

Ans. z= g.a,
2. The lamina of Exercise 1, § 6.

8. A lamina in the form of a 45° right triangle, if the density at
any point is proportional to the product of the distances from the
two legs.

4. The lamina of Exercise 6, § 6.
5. The lamina of Exercise 7, § 6.
6. Use the present method to obtain the earlier formula,

3
=

r=24 T

for a region bounded by the axis of @, two ordinates, and the curve
y=s@) >0. -
7. Show that, for the plane area of Question 6,

fy’d:o

Sy
¥="34
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8. Moments and Products of Inertin. By reasoning similar to
that of § 7 the following formulas are obtained. The moment of
inertia of a lamina of variable density about the origin is given by
the equation ;

® Iaffp(w‘+y2)d&

The moment of inertia of such a lamina about the axis of y is
given By the equation:

@) I=ffpa:2d/5';

with a similar formula for the moment of inertia about the axis of =

Products of Inertia. Let m,, mq, ---, m, be a system of particles,
whose coordinates are (x,, y,), (%3, ¥2), *+, (%, ¥.), respectively. By
the product of inertia of this system with respect to the coordinate
axes is meant the sum:

(3) P= g M2, Y = My Ty + Mo T2 Y2 + o 4 My Ly Yue

The definition is extended to continuous distributions by the
nsual methods of the caleulus. Thus for a lamina

) P= f payds.

By the product of inertia of a plane area is meant the value of the
above integral when p=1. The product of inertia with respect to
two parallels to the coordinate axes, which intersect in the point
(a, b), is defined a8

®) ffp(w—a)(y— b) dS.

EXERCISES
Determine the following moments of inertia by double integration,
+ 1. A square about its ceutre. Ans. § Mad,
2. A sguare about a side. Ans. } Ma?,

8. A right triangle about a vertex.

4. A right trigngle about the right angle.

5. A segment of a parabola cut off by the latus rectum, about
the focus.



1

DOUBLE INTEGRALS 5

8. The same, about the latus rectum.

7. A uniform lamina bounded by the parabola y? = 4 az, the line
z+y=23a, and the axis of =, about the axis of y. Work the
problem both ways, integrating first with regard to z, then with
regard to y; and then in the opposite order. Ans. I=4fpa’,

8. Give the details of the proof by which formula (1) is
established.

Determine the following products of inertia.

9. A square, two of whose sides lie along the positive coordinate

1

10. Each of the plane areas shown herewith.
Fia. 12

11. Show that, if either the axis of # or that of y
is an axis of symmetry, the product of inertia with
respect to the coordinate axes vanishes.

9. Theorems of Pappus. Turorem I. If a closed plane curve
rotate about an external axis lying in its plane, the volume of the ring
thus generated is the same as that of a cylinder whose base is the region
8§ inclosed by the curve and whose altitude is the distance through which
the centre of gravity of § has traveled :

(¢5) V=2=h. A4,
where h denotes the distance of the centre of gravity of 8 from the azis,
and A, the area of S.

Let the axis of rotation be taken as the axis of y, and let the
region § lie in the first quadrant. Divide § up into n elementary
regions, and consider the volume, AV, of the slender ring generated
by the k-th of these regions. Think of this ring as made of gutta
percha; cut it through along a meridian plane, and straighten it
out. Obviously, the part of the gutta percha that was near the
axis will be stretched, while the part remote from the axis will be
compressed. Hence a cylinder of the same cross-section as the ring
and of the same volume, AV, will have an altitude intermediate be-
tween the shortest and the longest parallel of latitude of the ring, or

272l AS, < AV, < 2 v AS,,

where ., z! denote respectively the shortest and the longest distance

of any point in A8, from the axis of y.
It is, therefore, possible to choose an’ z, intermediate between z;

! ch that
and z{, and su AP, = 2 2, AS,
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LY L)
Hense V= E 2 ﬂ'%,A‘sh = 12 §2 =z, A8,

or V=2r‘/‘fwd5.
]

On the other hand, by § 7, (1)

ffwdS=EA,
s

and hence V=2nxkA4, QXD

If the region § rotate only through an angle @, the volume V then
generated is obviously
@) V=0id -

Taeorem II. If a plane curve, closed or not closed, rotate aboui an
axis not cylting it and lying in its plane, the area of the surface thus
generated is the same as that part of the cylindrical surface having the
given curve as generalriz and its elements perpendicular to the plame
of the curve, which lies between two parallel planes which are perpen-
dicular to these elements and whose distance apart is the distance
traversed by the centre of gravity of the curve:

8=2xh-1 or @h . L
The proof is similar to that of the first theorem.

EXERCISES

1. Find the volume of a torus, or anchor ring.

2. Obtain the centre of gravity of a semi-circular lamina, assuming
the formula for the volume of a sphere.

8. Obtain the centre of gravity of a semi-circular wire.

4. Find the area of an anchor ring.

5. Prove Theorem II.

10. The Itersted Integral in Polar Coordinates. We have com-
puted the volume ¥V under the surface 2z = f(m, y) by iterated inte-
gration, using Cartesian coordinates. Let us now compute the same
volume, using polar coordinates. To do this, we divide the solid up
into thin wedgeshaped slabs (the slab not extending in general clesr
to the edge of the wedge) by means of n equally spaced planes
through the axis of z: (= 6, = &, 6, -+, 6, =B, and approximate
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to the volume of the k-th slab, AV, as follows, Let 4, be the ares
of the section of the plane 6 =6, , with the solid, and let this section
rotate about fthe axis of z through the angle Af. Then, by §9,
Theorem I, the volume generated is A8. h,A4,, and the sum of such
volumes,

g h,A, AB,

is a good approximation for V. In fact,
when we visualize the totality of these
pieces, we see that the volume of the solid
thus obtained approaches V as its limit,
when n = . Hence

8

@) V= 1im§h,,A,Ao= hAdb.
ol z  The product A4 which forms the integrand

corresponds to the cross-section made by an
arbitrary plane § = §'. Writing the equation
of the surface in the form

z=F(r, §)

and recalling the general formula for the ab-
scissa of the centre of gravity G of a plane
area, § 7, Ex. 6, we see that here the coordinates in the meridian plane
@ =6 are r and 2, corresponding respectively to ghe z and y of the
above formula. Moreover, h=%, R'=a, and R" =b, where R’
and R” are obtained by cutting the region S by the ray 6 = ¢ and
taking, on the line-segment intercepted by &8, the smallest » for R’
and the largest » for B”. Thus we obtain:

Fi16. 14

2’

o]
hA = f rF(r, 6')dr. ~~d8 g

Substituting this last expression in (1)
and dropping the accents, we get the final

formula :
” .
V= f do J rF(r, §)dr,

v Fia. 15
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Binoa the walue of the double integral ie also squal to ¥, the
Fundamental Theorem of § 4 now takes on the following form.

TragoREM :

-
@ f f F(r, 6)dS = f dé f rF(r, 8)dr,

whene the limits of integration, namely, R’ and R’ on the one hand,
and « and 8 on the other, are determined as set forth above.

It is particularly to be borne in mind that, before the first inte-
gration is performed, the integrand of the double integral, F(r, 6),
must be multiplied by r to give the integrand, rF(r, §), of the
iterated imtegral.

The Inverse Order of Integration. If instead of using the planes
#=40, 6, -, 6, we had divided the solid up by the cylinders
rm=ry=a, 1, r,=>b we should have
been led to the result:

3) f f F(r, 6)dS = j dr j ;'F(r, 6) dé.

Here, the first integration is performed on
the supposition that r is held fast and that §
varies algebraically from the smallest value,
@, which it has in § corresponding to the given value of r to the
largest value, @',

Ezample 1. To find the moment of inertia of a uniform circular
disc about & diameter.
Let the equation of the bounding circle be

o 4P =al or r=a,
and let the diameter lie in the axis of y. Then

Iupffm‘ds,
s

wxended over the circle,

The integrand, 2% of the double integral becomes in polar coord:
nates P(r, 6) = 12 008%9.
The integrand of the iterated integral is, therefore,

"F(f, ’.) -~ '.m"’t I
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Thus we have e o
I=;:fﬁfr'cos‘0dr.
The first integration gives
f 2 ..__‘.!f 2
7 008 0 =1 cos?é.

3
Hence I=E;l‘ cos’9d0=8‘§'-‘(o+gingcogg);'=’_'%_‘=%l'.

Example 2. The density of a square lamina is proportional to the
distance from one corner. Find its mass.

Here, M= fp ds, p=cr
s

Clearly, it is sufficient to compute the mass of one of the right tri-
angles into which the square can be divided. Thus

iz .
M= Jd&JﬂdT, R=;§_. ) "
R A8 =
‘f’ad"='3—c.%'§' e

x
4
37

do ginf - 1
—_— logtan{Z 4 2} =—— log tan==.
,fcos'o Foaer+ 4108 8834 3)| =5+ Hlog tany

Hence, finally :

2caty 1 3
=== —+}log tan==}:
=t Jp e =)
EXERCISES
1. Compute the moment of inertia of a uniform circular dise
abont its centre, Ans. } Ma*,

2. The density of & circular disc is proportional to the distance
from the oentre. Find the moment of inertia with respect to the

centre, and determine the radius of gyration.
Ans. I=§1roa'; kaa\q.

3. Compute the moment of inertia of t‘he square la.mma of
Example 2 about the point 0, sad find its radius of gyration.
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4. Find the centre of gravity of the square lamina of Example 2,

5. Determine the moment of inertia about the origin of the part

of the first quadrant which is cut off by two subcessive coils of the

spiral r=e¥
the inner boundary going through the point § =0, r = 1.

6. How far from the pole, » = 0, is the centre of gravity of a lobe

of one of the roses,

rd

r=acos36 or r=asindf?

7. Find the moment of inertia of the lemniscate

=ua2cos20
about the point » = 0.
- 8, I?etemine the centre of gravity of one lobe of the lemniscate
of Question 7.
9. Give the details of the proof of Formula (3) in the text.
10. Show that the area of any plane region 8 is given by the

formula
A= f f ds.
8

Hence, show that the area bounded by the curve
@ =sinr

and the portion of the ray 6 =0 between the pole and the point
= is . Draw roughly the boundary of the region in question.

11. Areas of Burfaces. We have determined the area under a
plane curve and the area of a surface of revolution by means of
simple integrals. The general problem of finding the area of any
curved surface is solved by double integration.

Let the equation of the surface be

@) z=f(@ y)

and let the projection on the (z, y)-plane of the part & of this surface
whose area 4 is to be computed, be the region 8. Divide § up into
elementary areas and erect on the perimeter of each as directrix a
eylindrical surface. By means of these cylinders the surface & is
divided into elementary pieces, of area A4, (k=1, .., n), and we
next consider how we may approximate to these partial areas.
Evidently thig may be done by constructing the tangent plane at a
point (2, ¥,y %) of the k-th elementary area and computing the area
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cut out of this plane by the cylinder in question. Now the orthogo-
nal cross-section of this cylinder is of area A.S,, and hence the oblique
section will have the area

AS, sec y,,

where y, is the angle between the
planes, or between their normals. The
desired approximation is thus seen to

be n
ZAS,, 8ec y,,
b=l

and consequently A is equal to the limit of this sum, or*

@ A=ffsecyd8,

where y denotes the acute angle between the normal to the surface
and the axis of 2.

There are three leading forms for representing the surface analyti-
cally (cf. Chap. VI, § 1), namely, the explicit form (1), the implicit
form
3 F(z,y,2)=0,
and the parametric form

“4) z = f(u, 'v)’ y=¢(u,v), 2= \b(uy v),

where f; ¢, ¢ have continuous partial derivatives of the first order
and at least one of the two-rowed determinants

op ¢ % o of of
. ou ov . ou Ov .| ow v
Jl_ éﬂ _a—‘l’ , ]2_ -a_): a_f. ’ jB_‘ ?2 ?é ?
ou oOv du ov du v

— here, j;, —is different from 0.
Corresponding to the form (1) formula (2) becomes

®) A= I f \!- +(%§>2+ ?aiy)”ds.

* It is a fundamental principle of elementary geometry to refer all geometri-
cal truth back directly to the definitions and axioms. What are the axioms on
which this formula depends? The answeris: The formula ilself is an axiom.
The justification for this aXiom is the same as for any other physical law,
namely, that the physical science, here geometry, built on it is in accord with

experience.
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The second form gmas

) 4= ff h .GF) - %)’ as.

The parametric form, (4), yields a formula, the complete establish-
ment of which must be deferred till the transformation of double
integrals has been taken up in Chap. XII, § 4. It is:

) A=ffAdudv,
3

where A=VA+A+A

and X is the part of the (v, v)-plane which corresponds to the sur-
face &.

Ezample. Two equal cylinders of revolution are tangent to each
other externally along a diameter of a sphere, whose radius is double
that of the cylinders, Find the area of the surface of the sphere
interior to the cylinders.

It is sufficient to compute the area in the first octant and multiply
the result by 8. We have to extend the integral (2) over the region

c 8 indicated in Fig. 20. Here,
# +y* + 2t = a?
and by (6)
=E= ....__a’-__ = 2 3
secy="- T 72 = 2?4 3

= Since the integrand, secy, depends in a
simple way on 7, it will probably be well to
Fia. 19 use polar coordinates in the iterated integral.

‘We have, then:
A= secydS = [dé a,r dr
¢ f Y J f Vat—

-— aJ":‘L= a¥(1 — sin 6),

ardr
Va-r

.’.{A-a’ﬁl-—-sinﬂ)d@=a’(§-1),

A =479~ 8a

Fra. 0

L]
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Objection may be raised to the foregoing solution on the ground
that the integrand, secy =a/Va®—7?, does not remain finite
throughout §, but becomes infinite at the point § =0, r=a. We
may avoid this difficulty by computing first only so much of the area
as lies over the angle ¢ < < x/2, where the positive quantity « is
chosen arbitrarily small. The value of this area is

a’f(l—sma)de—a?(—— o — cosa),

and its limit, when « approaches 0, is o* ({ = — 1).

EXERCISES

1. A cylinder is constructed on a single loop of the curve
r = q co8 nf

as generatrix, its elements being perpendicular to the plane of this
curve. Determine the area of the portion of the sphere

24yt 2t =2az

which the cylinder intercepts. Ans, 2z =20 ; 2)a*

2. Compute the area of the surface
z=x 4y

which lies above the triangle of the (#, y)-plane whose sides lie along
the lines 2=0 y=z y=a.

8. A column is bounded by the four vertical planes

z= 0, e=a, y=0, y=a;
the horizontal plane, 2= 0; and the surface
2e=14224+ 3y 44t

Find the total area of its surface.

4. Determine the area of the surface

z=xy
included within the cylinder
4 = a
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5. A oylindrical surface is erected on the curve r =@ as generatrix,
the elements being perpendicular to the plane of this curve. ¥Find
the area of the portion of the surface )

=gy
which is bounded by the (y, 2)-plane and so much of the cylindrical
surface as corresponds to 0 < 8 < »/2.

6. The horizontal cylinder
2 =f(x)
is cut by a vertical cylinder whose base is the region § of the (&, y)-
plane bounded by the lines z = a, # = b and the curves
y=9(), y=y (),
where ¢(z) and y(x) are two functions continuous in the interval
a<z<b and
P (z) < (), a<z<b.
Show that the area cut out of the cylinder is given by the formula

@) 4= f (T T\L+ (j"—m) dz,

where Li=¢@), Ti=y¢(@).

7. Two cylinders of revolution, of equal radii, intersect, their axes
cutting each other at right angles. Show that the total area of the
surface of the solid included within these cylinders is 16 a2

8. Obtain formula (8) directly, without the use of double in-
tegrals. ’

9. Show that the lateral area of that part of either of the cylin-
ders of the Example of the text, which is contained in the sphere,
is 4 a2

10. From formula (7) deduce the formula for the area of a surface
of revolution :

b —
(_11 2
= dz.
A way\/l"l'(dx)
‘Write the equations of the surface in the parametric form:

= u, y = f () cos v, z=f(u)sinw.

Asfff(u)\/1+_f'(u)ﬂdudv=2w F) V1 4 fi(u)tdu
k] 'y
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11. Express the equations of a torus parametrically, and thus
find its area.

12. Fluid Pressures. Let a vertical plane area be immersed in a
liquid as described in the Introduction to the Calculus, Chap. XII, § 11.
The pressure, P, of vhe liquid on the surface can be formulated as a
double integral by means of the same physical considerations as
those of the earlier deduction in terms of a simple integral. We find:

) P=wff(m+c)d&

Specific Pressure. We have hitherto dealt only with the total
pressure on a surface, and this is a force in the ordinary sense of the
term -—a push or a pull. In hydromechanics one meets the concep-
tion of the pressure at a point, and by this is meant the following.
Consider an arbitrary point, €, in the fluid ; pass a surface through
@, and draw a small closed curve C on the surface, which shall in-
clude @ in its interior or on its boundary. Let P denote the pres-
sure of the fluid on the part of the surface enclosed by C, and let 4
be the area of this small piece.* Then the ratio P/4 represents the
average pressure on the piece, and the limit, p, approached by the
aVerage pressure is what is meant by the pressure at the point, @, or

the specific pressure: P
= lim Z .

The direction of P approaches as its limit the normal at Q.

It is shown in hydromechanics that the limit p is the same for all
surfaces through @, no matter what their form and what their orien-
tation may be. This fact is often stated briefly in the words: “fluids
press equally in all directions.”

The total pressure on one side of a plane surface, §, immersed in
a fluid and oriented in any way, is normal to the surface and is given

by the formula:
8

The preof is similar to that of equation (5), §6, and is left to the
student.

*There are, of course, two sides of this small piece of surface, and two pres-
sures (equal and opposite), one on each side. We fix our attention on one of
thess sides, and on the pressure exerted by the fiuid on it. A draftsman's
thumb-tack {8 a suggestive model of the surface and the force.
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Example. The density of a certain liquid, acted on only by the
force of gravity, is proportional to the depth below the surface.
Find the pressure at an arbitrary point.

Let x denote the depth below the surface. Then

p=c2
The weight of a vertical column of the liquid, ¢ units high and of
eross-section of area 4, is seen to be
¢

Adez=;cAsw,

forees being measured in gravitational units.

If Q be an arbitrary point of the liquid, at depth «, and if the sur-
face through @ be taken as a horizontal plane, then the average
pressure on this surface will be

P_Jedx®
A= 4 =
Hence the pressure at @ (i.e. the specific pressure) will be: p =} ca?,

EXERCISES .

1. Give the proof of the theorem embodied in formula (1), draw-
ing the requisite figure.

2. By means of the above theorem show that the pressure P is
squal to the weight of a cylindrical column of the liquid, whose
cross-section is the area S, and whose altitude is thé distance of the
centre of gravity of § below the surface of the liquid.

3. From (1) deduce the formula for P given in the Introduction,
Chap. XII, § 11, p. 315, (4).

4. "The density of a certain liquid, acted on by gravity, is propor-
tional to the distance below the surface. Prove that the pressure on
3 vertical rectangle, one side of which is in the surface, is equal to
the weight of a vertical column of the liquid standing on an equal
rectangle and extending to a depth of v/} times the length of the
vertical sides of the original rectangle.

5. Find the centre of pressure in the preceding problem.

8. Use the results of the present paragraph to obtain a simpler
solution’of Ex. 7, p. 316, of the Introduction.

*



DOUBLE INTEGRALS 71

13. Attractions. Let it be reguired to find the attraction of a
material plane surface, or lamina, of variable density on a particle
of unit mass situated in its plane, but external to the area. The
problem will be solved if we can find the component of the resultant
attraction along an arbitrary direction. For then we can-compute
the components along two different directions, and by the law of the
parallelogram of forces find the resultant attraction.

Divide the area up into sub-regions and approximate to the com-
ponent attraction of each of these. It will be convenient to choose
our coordinates with the particle at the origin, and to compute the
attraction along the axis of 2. Since the choice of the direction of
the axis of z is arbitrary, our solution is general.

We may take it as physically evident that, when the area § is
divided into a large number of small areas, AS,, and the mass,
AM, = p,AS,, contained in each is concentrated at one of its points,
the attraction of this system of n particles is approximately equal to
the attraction of the actual lamina, and that the approximation grows
better and better as the number increases, the maximum diameter of
the sub-regions approaching 0, so that the limit approached by the
attraction of the particles is precisely the attraction of the lamina.

Let (7, 6,) be the polar coordinates of the &-th particle. For con-
venience we will choose this point so that the value of p in it will be
equal to p,; in other words, we will choose it as a point of the locus
p=pr We may now write simply p, instead of p,, since we are con-
cerned merely with the value of p in the point (7, 8,).

The component attraction of the k-th particle along the axis of =

will then be
K F%S" cos 6,

The limit of the sum of these components is the component attrac-
tion, F, of the lamina along that direction, or

Q@) F=lim ;K&:;ﬂ cos 6,
But this last limit is a double integral, and hence

_ pcos §dS
(@) F=K f__—_—’z
]

The variables » and 8 have been conveniently described as ¢ polar
coordinates,” but this does not preclude the use of other systems of
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coordinates in evaluating the integral, Essentially, the variable »
means the distance of a point P of § from the particle at O, and 4
means the angle from the dirsction along which forces are resolved
to the line OP.

Example. Find the attraction of a uniform semivircular ring
on a particle situated at its centre.

From considerations of symmetry it is clear that the resultant
attraction is along the radius perpendicular to the bounding diame-
ter. Hence H

5
%F:Kde@f@d?:Kplogz-

More Refined Treatment. The foregoing physical hypotheses are
cruder than is necessary and may be replaced by more refined ones
as follows. Since the form of the regions A8, is immaterial, we
may take them like the meshes of a spider’s web, dividing the region
up by circles whose common centre is at O, and by rays, equally
spaced, emanating from 0. The component,
AF,, will then * satisfy the relation

B K %‘i‘ cos ) < AF, < K B"——ﬁTSkcos 6.,
& k

where r/, 6, denote the least values of these
coordinates in AS,, and 7, 6}, their greatest.

We can now apply Duhamel’s Theorem, Introduction to the Cal-
culus, Chap. XII, § 8, setting

o, =K P_k__?"Sk cos §,, B, = AF,,
A

where (r,, 6;) is an arbitrary point of AS,, and p, is the value of

in this point. Thus formula (2) is established.

It has tacitly been assumed that S lies to the right of the y-axis.
If it lies to the left, AF, is negative, and relation (3) is false. How-
ever, by making a suitable choice of the points (v}, ;) and (v}, 6},
relation (3) can be reinstated, and the proof proceeds as before; cf.
the Exercises under Duhamel’s Theorem. In case § is cut by the
axis of y, each part can be treated as above, the final result being,
a8 before, Formula (2). .

% The basis of this statement is our physical intuition. In other words, this
statemont is procissly the physical law which we here postulate. We shall go
into this question in more detail presently.
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The advantage of this treatment over the earlier one is that the
present physical hypotheses are more plausible, —less drastic.
They amount substantialdy to two: First, if a plane distribution
of matter (to the right of the y-axis) is replaced by ome in which
some of the matter of the given distribution has been shoved radi-
ally (i.e. along rays from O) further away from O, the component
of the attraction along the axis of =z will thereby be diminished.
Secondly, if the given distribution be replaced by one in which some
of the matter has been shoved along arcs of circles with the com-
mon centre O, so as to recede from the axis of #, the component of
the attraction along the axis of z will thereby be diminished.

EXERCISES

1. Determine the attraction of a uniform semicircular lamina on
a particle situated in the axis of symmetry and on the circular
boundary produced.

2. Determine the attraction of a uniform rectangle on an exterior
particle situated in a parallel to two of its sides, passing through its
centre. Ans. I{M]o [h +a b+V(k—aP+ bz‘}

2ab h—a b4+~ + a) + b2

14. Note on Density. Pressure at a Point. Specific Foroe. We
have defined the density of a lamina at an arbitrary point, P, as

¢ p=]im‘%[,

where M denotes the mass and A, the area of an arbitrary piece of
the lamina containing P, when this piece shrinks down toward P
in any manner whatever, 1t8 most remote point approaching P as
its limit. Thus p is seen to be a function of the coordinates (2, y)
of P, and we have furthermore required that it be a continuous func-
tion. This latter hypothesis is, however, superfluous, since the con-
tinuity of p follows from its definition by means of the above limit.

For, suppose that, at a certain point P,, p Were not continuous.
Then it would be possible to find a set of points, Py, Py, -+ with
P, as their limiting point such that the corresponding values p,,
P2, -+ of p do not converge toward p, as their limit. In particular,
these points could be so chosen that either



74 CALCULUB

@ P> pot+ A, k=12, ..,
or
(#%)  m<p—h, k=12 .,

where & denotes a suitably chosen positive constant.
Buppose we have Case (i), It is possible to find a region A, for
which
M,
4,
comes as near to p, as one pleases and which, moreover, lies in an
arbitrarily small neighborhood of P,. Moreover, by running a
slender spur out from this region s> as to include the point P, in
the extended region, the modified value M;/4} of the ratio will be
at worst but slightly diminished, since A4} need exceed 4, by only
a slight percentage of 4,, and M| exceeds M,. If, then, we choose
the firet region so that
M,
4,
the second can also be taken so that

>Po+h;

% >po+ ke

‘We have here, however, a contradiction. For, the modified regions
pertain to the point P, and hence, by hypothesis, lim M;/A]| = p,.
Thus the theorem we set out to establish is proved, namely, that
the continuity of p is a consequence of the existence of the limit by
means of which p was defined. .

The theorem and proof hold for three-dimensional distributions of
matter, and also for two-dimensional distributions on a curved sur-
face. But it is not true for a one-dimensional distribution. The
existence of the density of a material distribution on a wire does not
ensure its continuity.

Mean Density. We have assumed that, for any lamina, the equa~
tion holds:
6y M= 4,
where p, the mean density, is a value of p intermediate between the
largest value, p", and the smallest value, p', which the function p
takes on in the region:

Pspse

That this is in fact the case can be shown as follows. Suppose this .
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were not so, and suppose that 5 > p'. Cut the region into two
pieces. For these,

Mi =pr Au My = P Ay
At least one of the quantities p; and py, must be as great as .
For otherwise M, < pdy
My < pdy;
hence M+ My < p(4A;+ Ap)
or M < pA.

But M = pd, and here is a contradiction.
Let A, denote one of the regions A;, Ay, for which the average
density, p;, exceeds or at least equals p:

PZp A,

Cut 4, into two pieces and repeat the reasoning. Then, for at least
one of these pieces, 4,, we shall have

22 p
and hence ps = p. Proceeding in this manner we obtain an infinite
sequence of regions, 4,, A,, -.-, each lying in its predecessor, for
each of which o '
P p
These regions can be so chosen that their maximum diameter ap-
proaches 0 as its limit, and they thus determine a point, P, common
to all of them,
The density at P is

PP= Eﬂl g:)
and since M,/ 4, = 5,2 p, it follows that

pr2p>p"

But this is impossible, since p' is the largest value of p in the
original region.

Pressure at a Point. Body Forces. Similar theorems obtain re-
lating to specific pressure. If a surface, §, form part of the bound-
ary of a fluid, and if @ be a point of S, we have defined the pressure
at Q, or the specific pressure p, by the limit:

p= limf,

y:|
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where A4 is a portion of § including @, and P is the pressure on A ;
cf. §12. And we have assumed that p is continuous. Reasoning
similar to the above shows that p must be continuous. Also, it can be
proved that the average pressure p, in case § is plane, cannot exceed
the maximum value p”, or cut under the minimum value p’, of p in 8.

In elasticity and hydromechanics one has to do with body forces.
A three-dimensional distribution of matter is situated in a field of
force, Let P be any point of the mass, and let » be s region in-
cluding P in its interior or on its boundary. Let the resultant
force exerted by the field on the matter in » be represented by the
vector (F). Then (F)/V, where V denotes the volume of r, ap-
proaches a limit, the vector §, the specific force — this is our physical
hypothesis % — lim @,

7
when the most remote point of rapproaches P. And now it follows
as above that the vector field is continuous, i.e. that the vector § is
continuous. Moreover, an appraisal of the average value of & as
defined by the equation
(F=V§

is here possible, in terms of inequalities analogous to the foregoing.

In the case of electric and magnetic fields of force the situation is
altogether similar.

15. Change of Order of Integration in an Iterated Integral.
Hitherto the double integral has come first, and the iterated integral
has played the rdle of an agent whereby the double integral is
evaluated. We may, however, start out with an iterated integral,
as L z

1) k/‘ dz | (22 + ¥ dy,

and inquire what this integral becomes if the order of integration be
reversed.
The question is readily answered by converting the ¥
given integral into a double integral. Clearly, the double
integral p o
@ f (2 + ) ds, Fia. 22
8

where S is the region consisting of the triangle indicated in the
figure, has the same value as the iterated integral (1). If, now,
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the double integral be evaluated by means of the iterated integral
taken in the other order of integration, we shall have the resalt we
set out to obtain :

@ fdz.f(mz+y2>dy=.fdyf(w2+yﬂ)da

EXERCISES

Express the following iterated integrals as double integrals, and
draw a figure showing the region S over which each is to be ex-
tended. Reverse the order of integration in each of the iterated
integrals.

Vat -

1 J dz | f(z, y) dy. . 'f dz | f(=z, y)dy.
1 f \/;

3. dy [f(=, y)da. 4. fd’ S (=, y)da.

/™ e

t -
ox a 2 4
5.% fdﬂfrﬁ'(r, ) dr. 6. Jdrer(r, 9) dé.
i

W

VR

asecd
1. J dé J rF (r, 6) dr. 8. f dr f &(r, 6) 8.

a 1

16. Surface Integrals. The extension of the conception of the
double integral from a plane region S to a curved surface & is
immediate. Let a function f be given, defined at each point of &,
and let it be continuous over & Let & be divided up into a large
number of small regions, A€,, and let f, be the value of f at an
arbitrary point of A&,. Form the sum:

gf,, A8,

#In Exs, 5-8it is assumed that r, 6 are interpreted as polar coordinates.
Work these same problems, taking r, 8, as Cartesian coordinates.
+ The notation A®,, A8, is here used both for the surface and for its area.
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17. A New Proof of the Fundamental Theorem. It is possible to
deduce the Fundamental Theorem of § 4 without the aid of the
geometric concept of the volume V.  This method has a two-fold
advantage: first, it throws a strong light on the determination of
the limits of integration; secondly, it is the only method ava.lla.ble
when we come to triple integrals.

_We shall give only an outline of the method in the present para-
graph, our object being to set forth clearly the thought and the
technique. A proof will be given in Chap. XII, § 3.

" ] In the sum:
1 n
- ! (1) Ef(wk: ¥i) A8,
fo=
L whose limit is the double integral
1 z
9l L (2) f sas,
Fia. 23 s

we may choose as the sub-regions, or elementary areas, rectangles
with sides Az, Ay, thus making AS, = Ax Ay, and then add all those
terms together which correspond to rectangles lying in a column
parallel to the axis of y. This partial sum can be represented as
follows :

9

5o 3 £z, 1)1,

r=1
where we have assigned new indices, i and j, to the coordinates of
the point (x,, ¥,), and where furthermore we have chosen the points
(z,, v,) of this column so that they all have the same abscissa, z,.

If, now, holding =, and Az fast, we allow ¢ to increase without

limit, Ay approaching 0 a8 its limit, we have

”

® s lim 31 £5, 4) 8y = 8 [ 1@, 1)
= "

Next, we add all the limits of these columns together:

L
¥

2, 82 | Sz, 9) dy,
g1

7

and allow p to increase without limit, Az approaching 0 This givea
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"
¥ 3 »

P
tim 3 82 [ 1@, ay= [ax [ 1 nay
¥ e v

P )
[}
i.e. the iterated integral of the Fundamental Theorem.*

This method of deduction is not rigorous, for we have not proven
that we get the same result when we take the limit by columns and
then take the limit of the sum of the columns, as when we allow all
the AS,’s to approach 0 simultaneously in the manner prescribed
in the definition of the double integral. It is nevertheless useful
as giving us additional insight into the structure of the iterated
integral, for it enables us to think of the first integration as corre-
sponding to a summation of the elements in (1) by columns, and of the
second integration as corresponding to the summation of these
columns. Moreover, when we come to polar coordinates in the next
paragraph, it helps to explain and make evident the limits of inte-
gration, and also the presence of the factor r in the integrand.

18. Continuation; Polar Coordinates. Let the region S be divided
up into elementary areas by the circles r =r,, r,; — ;= Ar, and
the straight lines 8 = 6,, 6,,;, — 8, = Ad. Then

AS, =1, ArAf0 4 L ArZAG,
and hence, in taking the limit of the sum (1), AS, may, by Du-
hamel’s Theorem, be replaced by r,ArAf. Writing

S, y)=F(r, )
we have, therefore,

f f fdS =lim 2 F(r,, 6,)r,ArAf.
L= {
S

In order to evaluate this latter limit, we
may replace (r,, 8,) by (r,, 8,) and, holding 6,
fast, add together those terms that correspond
to elementary areas lying in the angle between .
the rays § =6, and 6 =6,,,, thus getting -

P ~
AD > F(r,8,)r Ar

=

Fig. 24

% The limits of integration, y’ and y'/, are the functions denoted in § 3 by
Y, and Y,. The change in notation was dus to the integral in (8), where |
would have been awkwardly expressed as (¥y);, and likewise for ;. A simi-
lar change of notation is made below in § 18.
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The limit of this sum, as p=o0, is

"
LJ

Af f F(r, 6,)rdr.

s
Next, add all the limits thus obtained for the successive elementary
angles together and take the limit of this sum. We thus get

Il

lim2 f F(r, §)rdr = f dé f F(r, )rdr,
= ;

¢

1.e, the first iterated integral of § 10.

If on the other hand we hold »; fast and add the terms that eor-
respond to elementary areas lying in the circular ring bounded by
the radii r =7, and r = r;,,, we get

['d
Ar g F(r,, 6,)r &b,

and the limit of this sum, when g =0, is

o, o,

Ar | F(r,, 0)r‘d0=r,ArfF(r‘, ) dé.
. %

Adding all these latter limits together and taking the limit of
tlns sum, we have:

r”

hmzr‘A'r F(r‘,O)do =frdrfF’(r, 6) dé,

»

i.e. the second iterated integral of § 10.

The student may safely use the method of these paragraphs in
practice, since the ideas involved are all correct as far as they go.
A fallacy arises, however, when the ideas are set forth as if the
double integral, written in the form

f J(=, y) dedy,
3
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were the same thing as the iterated integral

j dz j ;'(w, L

“gince each is a sum of infinitesimals, and the order of the summa-
tion is immaterial.” It is curious that some men who consider
themselves practical and object strongly to anything theoretical in
mathematics, find no difficulty in accepting as sound a theory which
the race has long since outgrown. All the advantages of those
earlier attempts to regard the infinitesimal as the ultimate basis of
the calculus —like the atoms or electrons of modern physics — can
be preserved by recognizing that we have here only the outline of a
method ; a very suggestive and altogether correct outline, but one
which must be filled in by mathematical proof. Such a proof is
given below in Chap. XII.

EXERCISES ON CHAPTER il
1. Find the volume cut out of the first octant by the cylinders
z=1- 22 a=1-—9y% Ans. }$-
2. Compute the value of the integral:

f f e+ ds,
8

extended over the interior of the circle
24+yt=1 Ans. 5.40.

ff(ze-say)ds,

where § is a square with its vertices on the coordinate axes, the

8. Evaluate

length of its diagonal being 2 a. Ans. at
4. Express as an iterated integral in polar coordinates the double
integral
[ fres
s

extended over a right triangle having an acute angle in the pole.
Give both orders of integration.
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5. The curve "
coB =3 —3r41r2
rotates about the initial line. Find the volume of the solid gener
ated. Ans. $§ .
6. Find the volume cut from a circular cylinder whose axis is
parallel to the axis of 2, by the (z, y)-plane and the sufface

Ty = az,

if the cylinder does not cut the coordinate axes. Ans. zhkr?

o

7. A cone of revolution has its vertex in the surface of a sphere,

its axis coinciding with a diameter. Find the volume common to

the two surfaces. Ans.  $xa*(l — cos'a).
8. Find the volume of a column capped by the surface

z=ay,
the base of the column being the portion of the first quadrant in the
(2, y)-plane which lies between two successive coils of the logarith-
mic spiral, beginning with 6 =0:
' r=ael
Ans. g at(e® — 1)(e? 4-1).
9. Find the abscissa of the centre of gravity of the above column,

10. A square hole 25 on a side is bored through a cylinder of
radius a, the axis of the hole intersecting the axis of the cylinder at
right angles. Find the volume of the chips cut out.

Ans. 45°Va = B + 4 g sin—t 2

11. A square hole 2b on a side is bored through a sphere of radius
a, the axis of the hole going through the centre of the sphere.
Find the volume of the chips cut out.

Ans. §02VEF =20 4 (8ab — §19) sm-l—\—/—b-—— —$ a3sin!

a? — b? a’ — b

12. Find the area of that part of the surface
7= tan1¥
x

which lies in the first octant below the plane z = x/2 and within the
cylinder 22 4 y? = 1.
$3. The density of a squars lamina is proportional to the distance

from ohe corner. Determine the mass of the lamina.
Ans. 765 \ad.
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14. Find the centre of gravity of the lamina in the preceding
yuestion. dns, Feimai¥2=2+3log(1+VE)
B[VZ + log (1 +v2)]
15. Obtain a formula for the centre of gravity of a curved surface
of variable density.

16. Find the moment of inertia about the origin of the portion of
the first quadrant bounded by the curve

@+ +1D)=4,
correct to three significant figures.

17. Find the moment of inertia of an anchor ring about its axis.
-Ans. M(%a?+b%).
18. Two circles are tangent to each other internally. Determine
the moment of inertia of the region between them, about the point
of tangency.
19. Find the attraction of a uniform circular disc on a particle
situated in a line perpendicular to the plane of the disc at its centre.
20. Solve the same problem for a rectangular dise,
Ans. K "n]‘[t‘,a.n-l ———_ab—-—_
ab hVEE + af F 52
21. Show that the force with which a homogeneous piece of the
surface of a sphere lying wholly in one hemisphere and symmetrical
with reference to the diameter perpendicular to the base of the
hemisphere attracts a particle situated at the centre of the sphere is
proportional to the projection of the piece on the base.

22. Compute the attraction of a homogeneous hemisphere on a
particle situated at the point of the spherical surface most remote
from the solid.

23. Show that the residual area of the sphere of Question 11 is
16@2 [Si.n—l' -—TL-—; - 13 tan-1 b
V2(@-—-b) @ Vaz —-2p

24. Express as a double integral the iterated integral

T
2 2acosd

fdﬂJfrdr

-y
and state over what region the latter is extended
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25. The same for
bescs 3a \/I—;

(@) J a8 | frdr; ®) J dy f fda.

36. Change the order of integration in the following integrals:

@) f @ £z, yydy; ®) J 2y f (@, y) da.
- vala

27. The intensity of light issuing from a point source is in.
versely proportional to the square of the distance from the source.
Formulate as an integral the total illumination of a plane region by
an arc light exterior to the plane.

- 28. Compute the illumination in the foregoing question on the
interior of the curve.

rP=1—6, ‘
the light being situated in the perpendicular to the plane of the
curve at r = 0. Ans. 2A(1 — h cot™1h).

29. One loop of the curve
r*=q¥cos 3§

is immersed in a liquid, the pole being at the surface and the initial
line vertical and directed downward. Find the pressure on the

surface, Ans. wa’sx/ 3

80. One loop of the lemniscate
r?=q?cos 28
is immersed as the loop of the curve in the preceding question.

Find the centre of pressure. 2 1
Ans. Distance below the surface = a\/§<3—- +Z).
k. 4

81. Obtain a formula for the centre of pressure of an arbitrary
flnid on & plane area.
32. Prove that, if a specific pressure exists at every point of a
lene area immersed in a fluid, this pressureis a confinuous function.
33. Develop a formula for the kinetic energy of s material sur-
face of constant or variable density, which is rotating about an axis.

34. Compute the kinetio energy of the surface of a torus rotating
about its axis, the density being uniform.



CHAPTER IV

TRIPLE INTEGRALS

1. Definition of the Triple Integral. Let a function of three
independent variables, f(Z, ¥, ), be given, continuous throughout a
region ¥V of three-dimensional space. Let this region be divided in
any manner into small pieces, of volume AV, and let (z,, y,, ,) be an
arbitrary point of the k-th piece. Form the product f(z,, ¥,, 2.)AV,
and add all these products together :

@ z";fm, AN A

‘When n is made to grow larger and larger without limit, the greatest
diameter of any of the sub-regions, or elementary volumes, approach-
ing 0 as its limit, the sum (1) approaches a limit, and this limit is
defined as the triple or volume integral of the function f; extended
throughout the region V:

@ lim 3 ey 310 2) AV: = f f f fav.

It is not essential that the totality of the elementary volumes
should just fill out the region V. ‘We might, for example, divide
space up into small rectangular parallelepipeds, the lengths of whose
edges are Az, Ay, As, and consider such as are interior to V, or such
as have at least one point of V in their interior or on their boundary.
It is this particular division of space that gives rise to the notation:

ff S(=, ¥, 2)dz dy dz.
¥

But what is meant is the volume integral as defined above.

The proof involved in the foregoing definition, —namely, the
Proof that the sum (1) mctually approaches a limit, —bas to be
%iven along different lines for triple integrals, from what was
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possible in the case of double integrals. There, we were able ty

represent the sum "
Zf(wm n)AS,
k=1

by a variable volume which obviously approached a fixed volume

ag its limit. Here, we should need a four-dimensional space in
which to represent geometrically the sum (1). It is necessary,
therefore, to fall back on an analytical proof. The proofs of this
theorem and the Fundamental Theorem will be taken up in Chap-
ter XII. The theorems themselves, however, are easily intelligible
from their analogy with the corresponding theorems for double in-
tegrals, and it is our purpose here to state them and to explain their
uses.

Duhamel’s Theorem holds for triple integrals, as well as for simple
and double integrals, and by means of it, when needed, the earlier
formulas for mass, centre of gravity, ete, are extended to three
dimensional distributions,

EXERCISES

1. Show that the mass of a body, of variable (but continuous)
density p, is given by the triple integral :

M=fprdV.

2. Show that the abscissa, #, of the centre of gravity of the body
is given by the formula:

[l

in case the density is constant.

Z =

8. Show that its moment of inertia about an arbitrary axis is

e

where r denotes the distance of a variable point of the body from
the axis.
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4.% The component F of the attraction of the body, on a particle

of unit _mass situated at a point O outside the body, along an arbi-
trary direction is given by the formula:

e[ gt

where t denotes the distance from O to a variable point P of the
body, and y is the angle which OP makes with the given direction.
5. Show that the kinetic energy of a rigid body, rotating with
angular velocity o about a fixed axis, is
31 e?

where I denotes the moment of inertia about the axis.

2. Evaluation of a Triple Integral by Means of an Iterated In-
tegral. In order to compute the value of the volume integral
defined in § 1 we introduce an iterated integral. The method is
that of Chap. ITI, §§ 17,18. Let the region ¥ be divided up by
planes parallel to the coordinate planes into rectangular parallele-
pipeds whose edges are of lengths Az, Ay, Az, and let us take as our
elements of volume these little solids. Then AV, = Az AyAz and
the sum (1) of § 1 becowes

3) gf(mk, v, 2,) Az Ay Az,

Woe will select from this sum the

terms that correspond to elements

situated in a column parallel to o
the axis of z and add them to-

gether, see Fig. 26:

AmAyEf(m_, ¥, %) A%
=1

where we have assigned new indices, 1, j, and J, to the coordinates
of the point (%, Ye» %) 20d where furthermore we have chosen the

* Thig exercise may be postponed till the paragraph on the division of spa.ce
by the surfaces of spherical polar coordinates (§ 8) has been taken up, su.we
this division is the most convenient one for the proof. The object of ins.ertm‘g
the exercise at this point is to enable the student who has initiative and imagi-
nation to ploture to himself this division, after reading the definition of spherf- '
gal polar coordinatea in § 3, and thus to anticipate being shown how to do this
thing.
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points (2,, ¥, #,) of this column 8o that they all lie in the line
o=z, y=y,; If, now, still holding =z, y,, Az, and Ay fast, we
allow s to increase without limit, Az approaching 0, we have

4

A”Ayli’f gf(wu Y n)de =0z Ay [ f(x;, y;, 2)ds,
where Z, is the smallest ordinate of the points of ¥ on the line
r=uzx,y=y,;,and Z is the largest, — we assume for simplicity tLat
the surface of ¥ is met by a parallel to any one of the coordinate
axes which traverses the interior of ¥ in two points.

The surface which bounds ¥V consists of two parts,—a lowe
nappe, represented by the equation z = ¢y (2, ¥); and an upper
nappe, given by z = ¢,(z, y). The functions Z; and Z, have the
valaes respectively :

Zy= ¢y (2, y), Z, = ¢ (z, ¥).
Next, we add all the limits of these columns together:
2 ®(z, y;) Ax Ay,

5

S(, 9, z)dz = Q(Z, v),

where we have set

and take the limit of this sum. The region § of the (z, y)-plane
over which this summation is extended consists of the projections
of all the points of ¥ on that plane, and hence the limit of this sum
is the double integral of ® (2, y), extended over §:

(4) \ limEQ(m,,y,)Aa:Ay:fftde.
We are thus led to the final result: ?

FunpaMeENTAL TrEOREM OoF THE INTEGEAL CaArncurus: The
volume integral (2) of § 1 is equal to the iterated integral (4), or:

® fJfde= deff(z,y.z)dz

The double integral may be evaluated by any of the various iter-
ated integrals atudied in Chapter III. If, in particular, the iterated
integral in Cartesian coordinates be selected, we have (cf. Fig. 8):
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® S [ownas= f da J 8 (2, 3) dy,

where it is assumed that the region § is cut by a parallel to the axis
of y at most in two points.

We thus get, as one of the final formulas for the volume integral
in terms of simple integrals, the following :

O IJ de::jdzfdyj}(m, y, 2) dz.

Another form in which this iterated integral is written is the

following :
[

S(=®, y, 2)dz dy da.
a Y, I,

The abbreviated notation

ff f(z, ¥, 2)dxdydz

may mean either the volume integral or the iterated integral. This
notation should be used only when it is explicitly stated, or when it
is clear from the context, which is meant.

Ezample. Find the moment of inertia of a tetrahedron whose
face angles at a vertex O are all right angles, about an edge-adjacent
to O.

Take O as the origin of coordinates and the three adjacent edges
as the axes. Then

I=pr (a:’+y2)dV=lededyJ‘(w’+y’)lz;

where the limits of integration are as follows. First, the limit
Z, is =0, and the limit Z; = Z is the maximum ordinate in ¥ cor-
responding to an arbitrary pair of values 2,
y; i.e. the ordinate of a point in the oblique
face of the tetrahedron:

a b ¢

a b



92 . CALCULUS
and the result of the first integration is:

E=c(w° +y’)(1 —2—%)

=c[ﬁ(1—§>—%2y+(1_§>yz_s;_‘].

Next, the function @ (x, y) must be integrated over the surface 8
consisting of a triangle bounded by the positive axes of = and y,
and the line

F 4
®(z, y)=f(x" + P dz=(2*+y*)z

+<L=1,

&8
o il

The double integral may be computed by iterated integration, the
limits of integration for y being Y, = 0 and

Y= Y=b<1—§>,

and those for z being 0 and a. The remainder of the computation
is, therefore, as follows:

[ fernsn [L5 (-t
“le(-g0-0))
fdzfdy (w’i-y’)dz_f[: 1—5 +bz(1-;)]dz

=cﬂc(a2 + b,),

I=11£‘1;_0+_b’2.

The student can verify the answer by slicing the tetrahedron up
by planes parallel to the (z, y)-plane and employing the result of
Ex. 4 at the end of § 8 in Chap. ITI, together with the theorem of
§ 16, Chap. XIJ, in the Introduction. '
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EXERCISES

1. Find the centre of gravity of the above tetrahedron.

2. Determine the moment of inertia of a rectangular parallele
piped about an axis passing through its centre and parallel to four
of its edges.

3. A square column has for its upper base a plane inclined to
the horizon at an angle of 45° and cutting off equal intercepts on
two opposite edges, How far is the centre of gravity of the
column from the axis? Ans. }a/h.

4. The density of a cube is proportional to the square of the
distance from the centre. Find ite mass.

3. Continunation; Spherical Coordinates.* TLet P, with the Car-
tesian coordinates =z, y, z, be any point of space. Its spherical
coordinates are defined as indicated in the figure. If we think of
P as a point of a sphere with its centre at O and of radius r, then
0 is the longitude and ¢ is the colatitude of P.

We have
2 = r sin ¢ cos §,

y=7rsin ¢ sinéf,

Fia. 28

Z=TCOS¢.

We propose the problem of computing the volume integral

®) lim 3% /(e 0 2) V= [ J rav
k=l

by means of iterated integration in spherical coordinates. For this
purpose we will divide the region V" up into elementary volumes as
follows. Construct (a) a set of spheres
with O as their common center, r=r,,
their radii increasing by Ar; () a set
of half-planes § = 6, the angle between
two successive planes being Af; and
lastly (¢) a set of cones ¢ = ¢,, their
semi-vertical angle increasing by A¢:
.1 — ¢, = A¢d. Theelement of volume
thus obtained is indicated in Fig. 29. Fra. 29

» Cf. Analytic Geometry, Chap XXIV, §§ 1, 2. The student should practice

visualizing the loci which are defined by setting one coordinate equal to a con-
stant ; then those which arise when two coordinates are held fast.
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The lengths of the three edges that meet at right angles at Pare Ar,
rA¢, rsin ¢ Ad, and hence this volume AV differs from the volume
of a rectangular parallelepiped with the edges just named, or

® r28in ¢ ArAfA¢d
by an infinitesimal of higher order:
AV

=1,
r28in ¢ Ar AGAP
It follows, then, from Duhamel’s Theorem that in the limit of the
sum (8) we may replace AV, by the infinitesimal (9). If we set

» ¥ =F :0, »
we have S(@ 9, 2)=F(r, 6, $)

ff fdV =1lim i F(r., 0., ¢,)7i8in ¢, Ar AO A,
14 e

Can we evaluate this last limit by iterated integration? It is
easy to see that we can. For, the sum is of the type of the sum (3),
and hence the method of § 2 is applicable. Following that method,
let us select, for example, those terms for which 6 and ¢ have a
constant value, and add them together:

aAfAad 2 F(r:, 0;, ¢) isin ¢, Ar,
P

where 6, and ¢, are constant. They correspond to elementary
volumes lying in a row bounded by the planes § =6, and 6 = §,,,,
and by the cones ¢ = ¢, and ¢ =¢,,;. Now allow p to increase
without limit, Ar approaching 0. This gives, as the limit of the
above sum, B

ABA¢BIn ¢, J 72 F(r, 6,, ¢,) dr,

where B, is the distance of the nearest point of ¥ to O on the line
=190, ¢=d¢,and R, that of the farthest. We assume for sim-
plicity that the surface of ¥ is met by any one of the lines:

8 = const., ¢ = const., 7 = const.,
¢ = const,, r == const., 8 = const.,

which traverses the interior of ¥, in two points.
Next, we add all the limits thus obtained together :

{10) Y ¥ (6, $)20A4,
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where we have 'set .
8in ¢ [ F(r, 8, p)r2dr=¥(9, ¢),
. %

and take the limit of this sum. If we interpret 6 and ¢ as the coor
dinates of a point on the surface of a sphere r = const. (say, r =1),
then the points (6, ¢) range over a region S of this spherical surface,
which consists of those points in which radii vectores drawn to
points of ¥V pierce the surface of the sphere.

The region § is divided into four-sided pieces by the spherical
curves § =0,, ¢ =¢,. The figure strongly suggests the elements
which enter into the definition of the double in-
tegral. And, in fact, we can identify the limit
of the sum (10) with a double integral by trans-
forming the curved region § on a plane region
T as follows. Choose a plane and take a system
of Cartesian coordinates (§, ») init. Set

£=6, 1=¢.
Then a point (8, ¢) of 8 goes over into the point
(¢, 9) of the plane having the same coordinates, and thus the region §

is carried over into a region of the plane. This region we denote by T.
The limit in question now becomes :

1) lim 3% (¢, n) At A= f f ¥ (¢, 7) dédn,

i.e. the double integral of the function ¥ (¢, y), extended over the
region 7. This double integral can be evaluated by means of an
iterated integral, as set forth in Chap. IIL. In particular, we have

H,

) S [ve n)dr=jd$JW<s. ) dn.

Returning to the variables § and ¢, we thus obtain, as the final
formula,

(13) lim Y ¥(8,, ) A0Ag = f do f ¥ (0, ¢)do.
N a [

The limits of integration, ®, and &,, are obtained by giving 6 o
fixed value, § = ¢, and then determining the extreme values of ¢ in
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w

& along the line §=19. The smallest of these values is &,, the
largest, ®,.

Collecting the results hitherto obtained we are now able to express
the volume integral by means of an iterated integral as follows:

@ [ frav=fa fas freemeen .

The volume integral and the iterated integral are also written in
the forms:

B & B
fjffr’s'md’drdgﬁﬂ and ff[fr’sin¢drd¢d0. P
@ 00

We note that, in order to obtain from the integrand f of the vol-
ume integral the integrand of the iterated integral, it is necessary
to multiply S by #?sin ¢, and this is always the first step to take.
It is analogous to multiplying the integrand of a double integral by
7, when the evaluation of such an integral by means of the iterated
integral in polar coordinates is to be employed.

The determination of the limits of integration can be formulated
as follows. We have already seen how to find R, and R,. To find
&, and &, directly from V, without introducing the surface S, give to
# a fixed value, as 8 = ¢, and consider all the points of ¥ which lie
in the half-plane 6 =¢. The smallest ¢ which any one of these
points has will be the &, corresponding to this value of §; and the
largest ¢ will be @,. — Finally, to determine « and B3, observe that «
is the algebraically smallest value which # takes on for any point
in ¥, and B, the largest such value.

Ezample. To find the centre of gravity, &, of a homogeneous
hemispherical shell whose radii are @ and A.

Let the origin of coordinates be taken at the centre of the spheres,
and let the axis of # be the axis of symmetry. Since & lies in this
axis, the problem is merely to compute . We have:

z =ﬂ¥”£, | V=2.T" (4 — ).

Here, f=2z=rsin¢$ cosh,
and henoe the integrand of the iterated integral becomes :
Srising = r¥sind ¢ cos 4. .

i
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The iterated integral iteelf is

A

El P
fda d [ 1% sin? b cos 6 dr = } (At — o).
0 a

o3

33+ a*d +ad’+ A7)
8(a*+ ad + 42

Checks: () When a approaches A as its limit, & approaches } 4,
and this result agrees with the known position of the centre of
gravity of a zone of a sphere. (ii) Whena =0, Z=4 4, and we
have a solid hemisphere.

Hence T

EXERCISES

1. Work the foregoing example, using the plane of the base of
the shell as the (x, y)-plane, the origin being at the centre and the
positive axis of z piercing the shell.

2. The same problem, thé plane of the base being in the (z, 2z)-
plane, and the origin at the centre.

8. From the shell just considered a solid is cut by a cone of revo-
lution, co-axial with the shell and of semi-vertical angle «. Find
its centre of gravity. Check your answer.

4. Determine the attraction of a material homogeneous shell of
the formn described in the preceding problem, on a unit particle at
the centre of the sphere.

5. Compute the moment of inertia of a homogeneous sphere by
triple integration.*

6. Find the centre of gravity of the element of volume repre-
sented in Fig. 29.

7. Determine the attraction of a homogeneous solid cone of revo-
lution on a particle situated at its vertex.

8. Think out and work through the evaluation of a volume inte-
gral by means of each of the six iterated integrals, of which one is
the integral (14). Draw the figure in each case which leads to the
double integral, Express in words the rule for determining the
limits of integration,

* The term triple integration is used to apply both to the formulation of &
physical quantity as a volume integral, and to its evaluation by means of an
iterated integral. A similar remark applies to double integration.
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9. Develop the iterated integral by first holding a single coordi-
nate fast (e.g. set r == r,) and then obtaining a double integral,

10. Write out the twelve iterated integrals, — six, as three-fold
simple integrals, and six as a double integral combined with a simple
integral,

11, Apply to Exercise 5 a sufficient number of each type of the
iterated integrals considered in the preceding problem to make sure
that yon understand the rest.

12. A tetrahedron has its faces in the coordinate planes =0,

y=0, and the planes
z=z+y, z=a.

Express as an iterated integral of the type (14) the volume integral
(2), determining explicitly the limits of integration.

18. The density of a cube is proportional to the distance from its
centre. Find its mass.

14. Compute the moment of inertia of the cube of the preceding
problem about an axis through the centre parallel to four of the edges.

4. Conclusion; Cylindrical Coordinates. The cylindrical coordi-
nates of a point are defined as in the accompanying figure.* They
are a combination of polar coordinates in the
(=, y)-plane and the Cartesian z.

% =1rcosé, y=rs8in§, 2=2

The element of volume is shown in Fig. 32, The
lengths of the edges adjacent to P, —they meet
at right angles there, — are: Az, rAf6, Az. Hence the volume, AV,
of the element differs from r Ar Af Az by an infinitesimal of higher
order, and we have:

. AV

lim————— =1,

mrArABAz 1
From Duhamel’s Theorem it follows, then,
that in taking the limit of the sum (1), § 1,
AV, may be replaced by r,ArA6Az, and so,

setting  r(z, y, 2)= F(r, 6, ),

we obtain: g
f J f SdV = lim 2‘1 F(ry, 8,, 2,) 7, Ar A0 A

® Analytic Geomelry, p. 687,

F1o. 31

-
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This last limit can be computed by iterated integration in a
" manner precisely similar to that set forth in the case of spherical
coordinates. We thus obtain:

(15) fffde:s:jdzdejifrdr,
@ & R

together with similar formulas yielded by adopting a different order
of integration.

The above volume integrai and the iterated integral are also written
in the forms:

ff Srdrdfdz and ff Jrdrdédz.

Example. To find the attraction of a cylindri- z
cal bar on a partxcle of unit mass situated in its
axis.
The attraction is given by the formula (§1, f
Ex. 4): v P
Au: &———lkcos dav. ";
t? ) TR A
14 3
.Here o/t , =
Pt at o=t t ==
=12 4 2 cosy="=——v_—.
’ T Vri4? Y e
Hence
zrdr
A=”Jd0fdzf(r2+z2)a/z
‘2rdr z
=1 -—2__
(16) (,rz + z2)8/2 _\/;r_;__'z—z Vaz + z,)

A 3 zrdr _

fdz ('r’ + 2%)¥* f-\/az +2*
= a‘+(h+l)’+\/a2+h2;

o A=21rp[l+\/a’+h2—\/a’+(h+l)].

In the foregoing solution it has been tacitly assumed that A is
positive (or zero). If A is negative and, in particular =— }!, the
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‘ithraction should clearly be zero. And yet the above fm‘muh

yielde 3 positive result. What is the trouble ?

On scrutinizing the details of the work one finds that equation
(18) holds only when z > 0. For, if z < 0, the value of V47,
when r = 0, is not 2, but —2z To repeat: it is the positive square
root that is meant by -/, and not the negative one, and the positive
square root of 22 is here —2z. Thus (16) must read, when z is

negative :
1 zrdr 0z -1 % .
( T) J‘(rz _’_22)!/2 _\/m ) -\/az + 22

It becomes necessary, therefore, in evaluating the volume integral
for the case that k < 0, 14k > 0, to split the iterated integral into
two parts; the first corresponds to the part of the bar above the
plane z =0, and this attraction, 4,, is given by the solution in the
text, except that the limits of the integral with respect to z are now
Oand I 4 A:

Ay=2np[l+h+a —vV@TTT AL
For the attraction, 4,, of the part below the plane we have:
Ay =2mp[h—a+VaE F 12
Hence the resultant attraction, 4 = 4, + Ay, is:
A=2xp[l42h~Va>+ (I + h)*+Va? + k2]

Check. If in this last formula we set h =— !, then 4 =0, and
this result agrees with the physical fact.

EXERCISES

1. Determine the attraction of a straight pipe on a particle situ-
ated in its axis.

2. Find the force with which a cone of revolution attracts a paz-
ticle at its vertex. Ans. 2 xph(1l — cos a).

8. Bhow that the force with which a piece of a spherical shell
cut out by a cone of revolution with its vertex at the centre O
attracts a particle at O depends, for a given cone, only on the thick-
ness of the shell.

4. Prove the preceding theorem for any cone.
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5. Potential. The potential of & system of n particles, of masses
My, My, <, My, 18 defined (Chap. V, § 17) as

w=y Me L

Ly Ta Tn
where ry, 13, -++, 7, denote respectively the distances of the particles
from a unit particle situated at a pomnt P.

It is easy to see how this physical conception can be extended to a
distribution of matter, continuous throughout a three-dimensional
region V of space. Let ¥ be divided into n sub-regions, and let the
mass, AM,, of the k-th of these be concentrated at one of its points.
Then, when # is large and the longest diameter of any sub-region is

small, the sum
i‘.yl+_A_.%+ +A___M;,
41 T Ta
i.e. the potential of the n particles, appeals to our physical intuition
as representing approximately what we should understand by the
potential of the eontinuouns distribution ; and we should expect the
approximation to increase in accuracy and approach as its limit the
potential, «, in question. Thus
w=lim S AM;
R =l T

Since AM, = p, AV, where p, denotes the average density of the

k-th piece, the above limit is equal to the volume integral:

= f[ e

Similarly, if matter be distributed continuously over a curved sur-
face, the potential at a point P not on the surface is

@ o [,

where ¢ denotfes the density of the distribution ; , the distance from
P to a variable point on the surface, and the integral is the surface
integral extended over the surface.

The foregoing definitions apply, with the obvious modifications in
form, to continuous distributions of electricity.

Ezample. To find the potential at an interior point of & homo-
geneous shell bounded by concentric spheres of radii ¢ and 4.
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Let the axes be so chosen that P lies on the positive axis of 2, the
origin being at the centre, and let its distance from the centre of the
ghell be A, On introducing spherical coordinates, we have:

=124 h? — 2 hr cos ¢,
where r denotes the denominator of the integrand in (1); i.e. the dis-
tance from P to & variable point (r, §, ¢) of the distribution. Hence

u=p "d9fdr : risingdd
y V4Rt —2hrcos ¢

risin ¢ do =IVAF R —2hrcos ¢ —2r.
. VPR L h*—2krcosg R 0

Thus u=2 1rp(A.2 - a’),
and we are led to the result: The potential is constant within the above
spherical shell.

Furthermore, since the force which a distribution of matter exerts
in any direction is proportional to the directional derivative of the
potential function, it follows that the force is nil at each interior
point of the shell.

Bemark. The potential of a homogeneous sphere of radius R at
its centre is 3M

2xp Rt 3R
EXERCISES

1. Show that the potential of the shell of the Example at any
exterior point is the same as that of a particle of like mass, situated
at the centre of the shell.

2.* Obtain the potential of a uniform spherical lamina at any
interior point (¥) by evaluating the appropriate surface integral,
taken over the sphere; (i) by allowing a to approach 4 in the result
of the text, the mass of the shell being held fast. Ans. M/R.

8. The same problem for an exterior point. Ans. M/r.

4. Show that a homogeneous sphere attracts a particle outside it
as if all its mass were concentrated at its centre. Give the solution
first by means of the results obtained in this paragraph. Secondly,
compute the attraction directly, as an exercise in triple integration.

# The results in Exs. 2 and 8 are important in the case ¢f & uniform distribu-
tion of electricity over a spherical surface.
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8. Show that a homogeneous sphere attracts a particle situated
in its interior with a force proportional to the distance from the
centre.

Suggestion. Pass a concentric spherical surface through the par-
ticle and consider the two distributions into which the sphere is
thus divided.

8. If the density of a sphere is continuous, and if it i8 constant
over any concentric spherical surface; .e. if it depends only on the
distance from the centre, show that the potential at an exterior
point is the same as if all the mass were concentrated at the centre.

7. Refine the physical hypothesis in a way analogous to that fol-
lowed in the case of moments of inertia, fluid pressures, attractions,
etc.,, and thus, with the aid of Dubamel’s Theorem, deduce the
formulas of the text, (1) and (2), for the potential.

EXERCISES ON CHAPTER IV

1. Determine the attraction of a bar, of rectangular cross-section,
on an exterior particle situated in its axis,

2. Write down the five equivalent forms of the integral

J dy f dz [ £z, 3, 2)dz,

obtained by changing the order of the integrations.

8. Two spheres are tangent to each other internally, and also to
the (z, y)-plane at the origin. Denoting the space included between
the spheres by ¥, express the volume integral

i

by means of iterated integrals in Cartesian coordinates.
4. Express the iterated integral
a -: Vel-ad gty

szfdy:!’.fdz

as & volume integral, and state throughout what region of space the
latter is to be extended. :
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* §. " The same for
" f Sceosd
foosodofsinqadqb dr.
_% 1YY Y

8. The temperature within a spherical shell is inversely propor-
tional to the distance from the centre, and has the value T, on the
inmer surface. Given that the quantity of heat required to raise
any piece of the shell from one uniform temperature to another is
proportional jointly to the volume of the piece and the rise in tem.
perature, and that ¢ units of heat are required to raise the temper-
ature of a cubic unit of the shell by one degree, find how much heat
the shell will give out in cooling to the temperature 0°.

Ans. 270 Tya (b* — a?)

7. The interior of an iron pipe is kept at 100° C. and the exterior
at 15°. The length of the inner radius of the pipe is 2 em., that of
the outer radius, 3 cm. The temperature at any interior point is
given by the formula:

. T=alogr+ 5
where r i3 the distance from the axis and the constants «, 8 are to
be determined from the above data. Taking the specific heat of
iron as .11, and its specific gravity as 7.8, how much heat will a
segment of the pipe 30 cm. long give out in cooling to 0°?
Ans. 21,000 calories,

8. Show that the attraction of a homogeneous spherical segment

of one base, on a particle situated at its vertex, is

1 2k
2 ph { 1- 5\/_;} ,
where a denotes the radius of the sphere and h, the altitude of the
segment.
9. Show that the segment of the preceding question attracts a
particle situated at the centre of the base with a force
2=
3(a - hy
10. “Show that the attraction of a homogeneous segment of one

base of a paraboloid of revolution, on & pa.rtxcla situated at the
focus, is

[8a? —3ak + 4t —(2a— Wi at),
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a+b
3 4 'l'Pa log "";a—-’
where a denotes the distance from the vertex to the focus, and 5 is
the altitude of the segment.”
Prove that this proposition is true when b = @, and correct it
when b < a.
11. Find the attraction of the solid of the preceding problem on
a particle situated at the vertex.
12. Show that, in the case of a homogeneous oblique cone whose
base is any plane figure, the attraction at the vertex due to any frus-
tum is proportional to the thickness of the frustum.

13. A homogeneous hemisphere attracts a particls situated in the
rim of its base. Show that the component perpendicular to the
base is § 7 pa.

14. The Great Pyramid is 481 ft. high, and the bage is 756 ft. on
a side. If it were homogeneous and of density equal to the average
density of the earth, —namely, 5.6 times that of water, — find the
force with which it would attract a mass of one ton situated at its
vertex. (For the value of the gravitational constant, cf. the Zntro-
duction to the Caloulus, p. 334.)



CHAPTER V

PARTIAL DIFFERENTIATION

1. Funoctions of Several Variables. Limits and Continuity.* Con-_
gider a region, S, of the (x, y)-plane. To each point (x, y) of 8 let
there be assigned a delinite number, u, according to auny specific
rule. Then u is called a function of the independent variables (z, y)
in the region 8, and is denoted, for example, by the notation

1) u=f(z, ¥).

Similarly, we may consider a region ¥ of three-dimensional space
and assign a number, u, to each of its points. Then u is a function
of the three independent variables which are the coordinates of a
point in the region V:

@) u=f(z,y,2).

When the number of independent variables exceeds three, our
geometric intuition fails to provide us with a picture of a region in
four-, five-, or n-dimensional space. It is convenient to speak of such
regions by analogy with space of two or three dimensions; but the
foundation for the definition of such a region must be sought in an
analytic formulation. Thus we might consider those points { (x,y,2,t)
of four-dimensional space whose coordinates satisfy the relation

e A ik R LR
and call this region, by way of analogy, a four-dimensional hyper-
sphere.

# For the beginner, this first paragraph should be regarded as primarily
descriptive. He should read it thoughtfully for the ideas it suggests; but it
should not be made & task, like certain courses in History, which is tested
by a premature examination. Its object, at this stage, is cultural, —to give the
#tudent background, to acquaint him with the great ideas that underlie this
domain of analysis, and also to supply him with such information a8 he needs
in the immediate future. As he proceeds with the later paragraphs, he willdo
well frequently to recur to these pages, for they will mean more to him as his
knowledge increases and his imagination develops. For a thorough understand-
ing-of the subject of this chapter, this paragraph is of the highest importance.

1 Meaning thereby nothing more or less than the quadruple of values (z,y, 5, £),
1.e. this mark itself,

1na
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Fortunately that which is novel in functions of several variables
can, for the most part, be set forth by examining functions of twa
and three independent variables. In the first case the function, (1),
can be represented geometrically by a surface.* The function ia
said to be continuous at a point (,, y») of 8§ when the surface is con-
tinuous at the corresponding point. Let us seek an arithmetic defi-
nition of continuity which can be applied to functions of any
number of variables.

Limits. Let f(x, y) be defined at all points of the neighborhood
of a point (a, b) with the exception of this one point itself.} Then
J(=, y) is said to approach a limit, 4 :

lim  f(z, y) = 4,

(5, ¥)(a, b)

provided f(z, y) satisfies the following condition. Let ¢ be a posi-
tive number, chosen at pleasure, but then held fast. Then it shall
be possible to find a second positive number §, having the property
that the relation

flzy)—4i<e
shall hold for every point, except (a, b), whose coordinates satisfy

the relations }
lz—a[<3$, ly—2d| <8

Continuity. A function f(=x, y) is shid to be continuous at a point
(o) o) if it is defined at every point in the neighborhood of (z, y,)

and lim  f(=, y) = (%o, Yo)-

(=, y)e=(%g, Vo)

# There is, really, a subtle question here involved, namely, that of whether
the function is the dependent variable, u, which 18 represented by the ordinate,
or whether it is not rather the locus of the triples (u, &, ¥) which is represented
by the surface. As a matter of fact, the word function is used in both senses ;
bat it is the former sense in which it most frequently appears in what follows.

+ The function may be defined at the point (a, b), too. But, if it is, this fact
is wholly irrelevant in the definition we are engaged in setting forth.

t Geometrically the deflnition can be illustrated as follows. Represent the
function by a surface as desoribed above, u =/(2, ¥). Draw the horizontal
planes

® u=A+e, u=A—~e
and erect the vertical planes
(48 z=a+3 =x=a-8 y=b+s y=b-3

These aix planes enclose a paralielapiped. And now, to say that f(s, y) ap-
proaches A as its limit is merely te say that those points (u, z, y) of the loous
% = f(2, ) for which (z, y) lies in the square (if) of the (z, y)-plane—the
centre {a, b) being omitted -— are all contained within this parallelepiped.
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In ease (%, y,) lies on the boundary of the region, only such points
(®, ¥) come into oonsideration as lie in the region.
These definitions extend to functions of any number of variables.

Infinitesimals. Let
{=rf(sp)

be a funetion whieh is defined throughout the neighborhood of the
origin, (a, B) = (0, 0), with the possible exception of this one point
itself ; and let
lim t = (.
(e, 81440, 0)
Then { is called an tnfinitesimal. The independent variables (a, B8)
are called the principal infinttesimals.
The concept of order, — same order, first order, second order, ete.,
- does not admit of immediate or useful extension to the infinitesi-
mals uwrder consideration, except in the following case. We define
{ to be an infinitesimal of higher order provided
im €
@ P00 /T T
We might equally well lay down the definition in the form *

= 0,

lim & _o
@aeolal +| gl

Thus {=a*taf+

is an infinitesimal of higher order, (¢, 8) being the principal infini-
tesimals.

2. Law of the Mean for Functions of a Single Variable. Let ()
be a function which is continuous throughout the interval a S = £ b,
and lot it have a derivative, df /dz = f'(z), at every interior point of
the interval, Draw the graph, and let LM be the secant connecting
its extremities. Then there will be at least one point of the graph
at which the tangent to the graph is parallel to the secant LM.

The truth of this statement is evident intuitively. For, consider
the distance, PQ, from a point P of the curve to the secant,
measured along an ordinate. This distance (taken algebraically) will
have either a maximum or a minimum value, and at such a point the

# The latter form has the advantage that it can be extended to complex
guantities, whereas the former form then breaks down.
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tangent is evidently parallel to the secant. Now the slope of the
secant is M

b) — f(a v
tan Z NLM =

b—a '’ Q /ﬁ}ﬂwm
and the slope of the curveat = X is L I
J'(X). Hence ] L =

f{b) — f(a) °f e = ox b
- e
b —a S(X),

Fia. 34

(4) () —f(@) = (b —a)f(X), a< X<b.
If we set b— @ =h, then b =a + h, and we may write X in the

form: X=a+6h,

where 4 is some number lying between 0 and 1.* Equation (4) can

now be written in the equivalent form :

(B) S(@+ k) =f(a) + hf'(a+ 6h), <<l

The theorem contained in either of the equations, (4) or (B), is
known as the Law of the Mean in the Differential Calculus.t In
the form (B) it is identical with Taylor’s Theorem with the Remain-
der for the simplest case.

In (A4), a and b can be interchanged, and in (B), k can be negative.

An analytical proof of the Law of the Mean can be given as fol-
lows. Form the function

$@) =LU=LE o —0) - [7) 1 (@)}

This function satisfies all the conditions of Rolle’s Theorem, Intro.
duction, p. 430, and hence its derivative,

must vanish for a value z = X between a and b:
LU__L(_lbb:a“_f(X)=o, a< X<b
Thus the theorem is proven.
® We may think of the second term, #h, as representing that portion ot't.he
interval b — @ = & which must be added to the segment a to take us to X.

t The Law of the Mean in the Integral Caloulus was obtained in the Intr-
duction to the Caloulus, p. 848.
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This proof merely puts into analytio form the geometric proof
first given, for the function ¢(x) here employed is precisely the
distance PQ.*

EXERCISES
1. Show that
h
2. Show that
1 h
h<logm<i-__—h, O0<h<cl.
3. Show that
1+——9——_<\/1+a:<1+ z, —1l<z 20
ovitz b '

3. The Fundamental Lemma. We have already defined partial
derivatives.t Let u be a function of several independent variables,
sy, 2

u=f (:l:, Y z):
and let all the variables but # be held fast. Then u becomes a funo
tion of x alone, and its derivative is denoted by §

du

P or Nz Y, 2) or S ¥, 2)-
Similarly, when y alone is allowed to vary, we have

2u

oy or Sz ¥, 2) or .fy(z) ¥ 2) ete.
There are as many partial derivatives of the first order as there
are independent variables.
Furthermore, we write
g [Ou o
walay ) =5y = B D O Lol 9,

D =fulm ) or fu® ) et

® The underlying imporiance of the analytic proof is due to the fact that this
proof rests on the most elementary considerations of analysis, as distinguished
from geometry, — namely, on the theorems about continuity and the definition
of n.derivative. A detailed study of these, however, belongs to & later stage.

1 Fatroduction to the Caleulus, Chap. XV, § 2,

$1t s not poesible to consider the expression du/ox as the matio of two
infinitesimals; of. §6. The notation must be taken as a whole, which expresses
the partial derivative.



PARTIAL DIFFERENTIATION 111

The theory of partial differentiation is based on a lemma which
we proceed to deduce. For convenience let the number of inde-
pendent variables be two:

@) ' u = f(z, y),

and let this function, together with its partial derivatives of the first
order, be continuous throughout a region, 8.
Consider an arbitrary point, (%,, %), and a second point,

(0 + Az, o + Ay).
Denote the corresponding increment in the function by Au:
@ Au = f(xy + Az, Yo+ Ay)— f(@o Yo)-

This last expression we now transform by adding and subtracting
the same quantity, f(z, ¥, + Ay) :
@ Au = f(a + Az, Yo + AY) — [ (%o, Yo + AY)
+ /(@0 %o + AY) — S (@, t0)-

To the first of these differences we apply the Law of the Mean,
§ 2, thinking of f(z, y, + Ay) as a function of z alone, and letting =
range through the interval =z, < # < @) + Axz. The derivative of
this function is f;(», yo + Ay). Thus the Law of the Mean yields
the result:

S(@+Az, Yo+ AY) —f(xo, Yo+ AY) = Az f1(%+0 Az, yo+Ay), 0<O<L.

To trapsform the second line in the expression for Awu, consider
the function of y alone, f(x, ¥), in the interval ¥, < ¥ < ¥ + Ay
The derivative of this function is fy(zy, y), and thus the Law of the
Mean gives :

S0 Yo + BY)— f(20, Yo)= Ay fo(%o, %0 + 0'4y), 0< ¥ <1

Hence we have the relation:

4)  Au=/fi(z + Az, yo + Ay) Az + fa(zo, Yo + 6 AY) Ay.

It is assumed that all points of the rectangle whose vertices lie in
the four points (x, + Az, yo + Ay) lie in the region 8.
By hypothesie, the partial derivatives,

g—: = fi(=, ¥), ;_;;' = fy(=, y)

are continuous functions. If, then, we set
Si(@+ 0%, Yo+ AY) = fi(@o, $o)+e  Sa(®, Yo+ 8 AY)=13(%0, Yo) +my
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" both ¢ and 5 will be infinitesimals :
lim e= 0, lim N 0.
(s, Ap=0, 0 (as, Agyiett, )

On substituting these values in (4), we have:
®) Ay = fi(@0) Yo) Az + fa(o, %) AY + €Az + y Ay,
or, on dropping the subscripts,

_tuy, O

@ Au—azAz+ayAy+cAm+~qu,

where (z, y) is an arbitrary point; Az and Ay are any two inore.
ments, subject merely to the condition that the rectangle with
vertices (¢ + Az, y + Ay) lie in §; and ¢ % are infinitesimals
whenever Az and Ay are infinitesimals.

If u is a function of three variables, z, ¥, 2, the equation takes the

form
ou ou ou
Iy = = = i A A
a Au aJ;A:ﬂ+ayAy+azAz+e z + nAy + { Az,

where ¢, 3, { are infinitesimal when Az, 4y, Az are infinitesimal;
and similarly for any number of variables.

& Change of Variables. If u comes to us as a function of the
variables (z, ¥),

(1) u=f (my 3/),
and we make » and y depend on new variables, (7, §):
(2) z=¢(r, 8): y= 'I’(ri 8))

then u becomes a function of (r, s). The derivative of u with re-
spect to r is expressed by meang of the following formula:

Ou Oubx , Oudy

A ou L ouon, ouly,
() o dwor  dyor

To prove this statement, choose an arbitrary point (7, &), give r
an increment Ar, and denote the corresponding increments in wu,
x, and y respeetively by Aw, Az, and A,y. Then, by the lemma
of § 8, . 3 ;

1 w
Aru = aTtArw + a—y'Ary + EA,Z + ﬂA'y-
On dividing through by Ar and allowing Ar to approah 0 as its
limit, we have: o ’
Al o lim AR | i ALY,
e A = UG ar Tamdy ar ‘
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Here, ou/oz and Pu/dy are constants, being the values of these
derivatives at the point (zy, y,) which corresponds to (7, 8). Henoce
they may be taken outside the limit sign. Moreover,

imA L A2 8 g, Ay Gy,
ansd Ar Or arsd AT Or
Thus the truth of (4) is established,

It is assumed that ¢ and y are continuous, together with their
partial derivatives of the first order, throughout a region % of the
(r, s)-plane ; that, moreover, f is continuous, together with its partial
derivatives of the first order, throughout a region § of the (z, y)-
plane; and that, finally, the points (z, ¥) which correspond by (2)
to points (r, 8) of X lie in §.

The number of variables in the two classes,— (z, ) on the one
hand, and (r, s) on the other, —need not be the same; the number
in each class is arbitrary. Thus the variables of the first class
might be #, y, 2, and those of the second class, the single variable, &.
The derivative of » with respect to t would then be a total deriva-
tive, and we should have:

(3) du _ dudx

du _ Oudw  Sudy  dudz
at oz dt

tyathna
Again, there may be but a single variable, z, in the first class, and

several, (7, 8, ---) in the second class. Here,

Ou _ duox ou _ dudx
@ o dwar P o R B
If there is but one variable in each class, the case reduces to that
of the Introduction, Chap. 11, § 8, p. 35; and on the other hand the
present theorem is a generalization of that one.
, The result can be formulated as follows.

TreorREM. If u be a function of the variables z, y, 2, «-- :
u=f(z,¥ 2 )
continuous, together with its partial derivatives of the first order, through-
out a region S of the (z, ¥, 2, -)-space; and if each of the arguments
x, ¥, 2, - be set equal to @ function of the variables r, 8-« :
2= ¢(r’ 3,...)’ y=.’,(r’ 8, ...), zam(r’ 3,...), vy
where ¢, ¥, w, +++ are continuous, together with their partial derivatives of
the first order, throughcut a region X of the (r, s, --)-space, and where,
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moreover, each patat (v, s, .-} of % leads to a point (z, y, 2, ...‘) of 8;
then )
u _ Oudx 8u31 Oudz

) or = 2w or oy 3r oz 3r+
with similar equations for ou/0s, --.
Ezample 1. Let u=e",
o = logVrl + &, y = tan! f
Then ) g—: =ye” z—; =we¥,
oz _ _r dy_ —s
or 48’ or 4
and hence %‘; %-T-F e,
from which expression z and y can be eliminated if desired.
Boample2. It y=f@+a,y+0),
show that du_du u_ du

% e T oy @

Here, u is not an arbitrary function of the four variables z, y, a, b,
but depends on these variables only as they enter through their
sums, z +a and y+b. In other words, u is any function of two
variables, X and Y, continuous together with its first derivatives,
and these variables in turn are set equal to the above sums:

u=f(X, Y),
X=z+aq, Y=y+b.

The derivatives of « with respect to the variables of the second

elass, (z, ¥, a, b), can be computed by the theorem of this paragraph:

du_ 0udX | 0udY
% 0X 0z QY ox

=f-14+54K0
ou
‘Bzafh
ou  du

e TR —

oz da
Un like manner the second equation is established.

Similarly,

and hence
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Remark. In applying the theorem for the change of variables,
which is embodied in Formula (4), the student must make clear to
himself at the outset that he has to do with fwo classes of independ-
ent variables, — the variables of the first class corresponding to the
{z, y) of the text, and those of the second class corresponding to
the (r, 8) of the text. In the terms on the right-hand side of (4),
the first factor is each time a derivative with respect to a variable
of the first class, and there are as many terms as there are variables
of this class. The second factor is the derivative of one of the func-
tions (2) with respect to the particular variable of the second class,
which has been singled out; and there are as many different equa-
tions (4) as there are variables of the second class, for the complete
solution of the problem consists in finding not only du/or, but also
du/0s, ete.

EXERCISES
. 1. If ©=x2— y2
a z=2r—38s+1,
an y=—r+8s—9, )
ou w
find == Ans. —=4z+ 29
o o Y
2. In the preceding question, find aa—';-
3. If ° = a:y'
and z == acosf, y=asiné, z = b6,
find 2.
do
4 If w=21Y
1—ay
and z = tan (2r — ¢, y = cot (r%s),
ou ou
d —-.
find — e an %
5. 1f u = f(z, ¥, %)
and

y= a'z’ + bty + ¢
g=a'’r + 0"y + "7
ou @ /a“
3w St oy
Bu

m—a:c+by’+@']
o2
s’

show that ay

and find —~—— and -~
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6 H =roos¢, g=rsing,
Bu\t  [Bu\ _ fou\? | 1[Bu\t
movint (G +(@) = (&) +4()

. ou ou . ou ou_
Buggestion. Compute first — P and — 5% in terms of — o and —= ay
7. I % =1 (zy),

ou ou
show that zo = yé;
8. If U= (_'!),
show that 6 + ygu 0.
5. The Total Differential. The Fundamental Lemma, Fo:;,mula
I) of § 3:
@ Au—gl—‘Az+g;Ay+cAz+qu,

-

affords an analysis, or breaking up, of the increment, Au, into two
parts, each of which is simple for its own peculiar reason. The
first two terms form a function of Az and Ay of the simplest imagi-
nable type,—a linear function, for 6u/oz and éu/dy do not depend
on Az and Ay. It is natural to define these terms as the principal
part of the infinitesimal Au. The remaining terms constitute an
infinitesimal of higher order. For,

cAz 4+ nAy = Az 4 Ay
VAZ LAY VAT + Ayt VAZ+ Ap
and each of the fractions on the right-hand side is numerically less
than, or at most equal to, unity.
Henoce lim <f4x+nly
(8% an=0,0 /Ax? 4 Ay
We define the differential of u as the principal part of Au, and .
write :
- o ou

&) du = o Az 4+ — 3 Ay,

noting well that the independent variables of the function u are
and y,
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Since the definition holds for all functions u, we may in particn
lar set u ==z. It follows, then, that

(1z=a—mA:l7+8m
oy

=1.Az+ 0. Ay,
or dz = Az.
Similarly, on setting u = y, we infer that
dy = Ay.

Ay

On substituting these values in (1) we have:

Ou

B du = —

B U = 8 Yo + 2% 3 dy.
Thus far, the independent variables have been x and y, and the

mfinitesimals dz, dy, being equal respectively to the increments Az,

Ay, are independent, or principal, infinitesimals. If we introduce

new variables as in § 4, setting

@ z = ¢(r, 3), y=vy(3),
then dr and Az will in general no longer be equal, and the same is
true of dy and Ay. Hence equations (1) and (B) cannot in general
both be true, and there is no a priori reason to suppose that either
will be.

FuxpaMENTAL THEOREM: The equation

(B) du::a—d +Z—“d

holds, no matter what the independent variables be.

Proof. When r and s are the independent variables, we have by
definition :

dz =22 ar + % s,

or 08

@) % oy
dy=a—rAr+ asAs,

where 2 and y are respectively the functions ¢(r, 8) and y(r, 8) of (2).
On the other hand, by deﬁnition,
ou

4 du =2 % Ar+ ; As.
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Multiply the first of equations (3) through by ou/éz, the gecond
by du/fy, and add. Thus
ou

du

ouodz , dud ondr | dudy
But the brackets are equal by Theorem (A) of §4 respectively to
du/?r and du/0s, and hence the right-hand side of (5) reduces to the
right-hand side of (4). Hence the left-hand sides are equal, g.e. d.
The number of variables in each class is arbitrary. In particular,
if u depends on =, y, z, we have:

ou ou on
And again, if there is only one variable, as z, we have the equation
of the Theorem on p. 93 of the Introduction :

du
du = —dz.
= %

But this equation now holds not merely when z depends on a single
wariable, as ¢, but when x is a function of any number of variables,
BB T, 8, -,

It is possible to look on the individual terms in the right-hand
side of equation (B) as the principal parts of the partial increments
in the function ¥, due to varying one argument at a time;

Au=f(x+ Az, y) — f(2, ¥),
du= % dz, ete.,
and to write:
du = du <+ du.

From this point of view, du is spoken of as the total differential of u,
and it appears a8 equal to the sum of all the partial differentials,
d,u, d,u. But these partial differentials are of little use in practics,
for it is not possible to pick to pieces a partial derivative, du/dx,
and regard it as the quotient of an infinitesimal, du, by a second in-
finitesimal, 02 *

* The equation we should like to write from this point of view, namaly,

du ou
U= naz-»-&._ay.
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The geometric representation of the differential in the case of
functions of two independent variables has already been pointed
out; JIntroduction, p. 444

It is readlly shown that the general theorems relating to the
differentials ‘of functions of a single variable :

d(cu)=cdu
d(u + v) = du 4 dv,
d(uv) = udv + vdy,

u\ _vdu—udv
d(;’-) —vdu—udy,
hold for functions of several variables. Moreover, the differential
of a constant, considered as a function of several variables, is 0:

de= 0.

Remark. The student may find himself confronted by a subtle
difficulty in the theorem that ¢ the differential of an independent
variable is equal to the increment of that variable.” For, differen-
tials have been defined only for functions, i.e. dependent variables.
There are two ways out: (i) define the differential of an independ-
ent variable as equal to the increment of that variable; (¢{) refrain
altogether from defining the differential of an independent variable
and consider dz, when z is an independent variable, to be the differ-
ential of the function, u = =.

The second alternative corresponds precisely to what is done, in
an analogous case in the Calculus of Variations, in defining the
variations 8y, 8z, -.. of the independent functions, y, 2,

6. Continunation. Applications. By means of differentials it is
possible to compute the partial derivative of a function when a
change of variables has taken place. Let us treat the two Examples
of § 4 by the new method.

Example 1. U = e%,
2 =log vVt 4 &, y=tan-11-"_-
leads to the sbsurdity that 9
1=2.

We refrain, therefore, once for all from undertaking to give to &z and 2u any
independent meanings, and regard the notation g—: as one homogeneous, albeit

wmewhat clumsy, yet universally accepted, expression for the partial derivative.
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Here du == yeo dz + 2e~ dy.

Now, this equation holds, no matter whether the independent
variables be (z, y) or (r, s). In the latter case,*

— 38 ‘7
r2+82Ar+ﬂ+3’Aa

8
A dy =
dw=ﬁ+82Ar+ Ara 3, y

Hence
ry — 8% 1%+ 8y
dy = g e Ar o eV Ag,

On the other hand,

ou
du ..--a—-Ar+a As.

Thus these two right-hand sides are equal to each other, and Ar and
As are independent variables. This can be true only when the co-
efficients of Ar are equal by themselves, and those of As are equal by
themselves, For, we may set As =0, Ar = 0, and then

ou Yy — 8T
9% Ar =Y = 37 v Ay,
or r= 72 4 82 emar
But Ar = 0, and 8o we can divide through by it. Thus we have:
U _ TV~ 8% ey and similarly, Ou_ o4 8y oy

or r4s 0s 148

In substance, this solution is the same as that of § 4; it differs
only in form.

Evample 2. If
v=f(z+a,y+0),

show that o 3 o

U (] (7 (/7

i L v

Write ' u=f(X7 Y);

X=z4+a, Y=y+b.
Then du=f,dX + f,dY

=hHdz 4+ fida 4 fody 4 fodb,
But

du aa“d:v+a da +a“d +audb

" # 1t is immaterdial whether we write Ar and As or dr and da, since foew e
Ariadivosin are eapeciively equal to each other.
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Here, dx, .-, db are independent infinitesimals, and so the two ex-
pressions for du can be equal only when the corresponding coeffi-
cients of dx, ---, db are respectively equal. Henoe

Ou ou__ ou _ ou
5;=.fls E;—ﬁ’ @—fz, éz—fﬂa
and thus
ou du ou Ou

e =

oz o0a’ 2y b

EXERCISES

Work Exercises 1-5 and 7, 8 of §4 by the method of this
paragraph.

7. Law of the Mean for Funotions of Several Variables. Equa-
tion (4) of § 3 embodies a certain form of the law of the mean for
functions of several variables; but there is a more symmetric form,
which is easier to remember and is equally useful in practice.

Let f(z, y) be continuous, together with its first partial deriva-
tives, throughout the region

aLrSa+th, bsysb+k

Form the function
®(t)=f(a+th, b+tk), 0<t<1,

and apply to it the Law of the Mean, § 2:

(1) — 2(0)= @'(8), 0<o<l.
Hence
1) f(a+h, b+k)=f(a, b)+rfi(a+ 6k, b+ 6k)+kf(a+-6h, b+ 0k),
where 0<o<l.

Equation (1) expresses the Law of the Mean for functions of sev-
eral variables, which we set out to establish. % and k may, one or
both, be negative ; but § always lies between 0 and 1. The extension
to the case of a function of more than two variables is immediate,

8. Euler’s Theorem for Homogeneous Functions. A function u is

said to be homogeneous if, when each of the arguments is multiplied

. by one and the same quantity, the function is merely multiplied by

a power of this quantity. For definiteness we will assume three
arguments :

(1) u=f(z, ¥, z),
JO) Wy, M) = NS, y, ?).
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The explicit function shall be denoted by f:

® z = f(z, y).
Thus
(4) F [x’ wnrS (‘”: y)]E 0,

i.e. this equation is an identity, since it holds for all values of the
arguments, z and y.

The problem is to find #z/0x or f(z, ¥), and similarly 0z/0y. To
do this, let

) u=F(z,y, z)
Then
(6) du=F1d.’u+F2dy+F3dz.

This equation holds, not only when &, y, z are the independent
variables, but also when, in particular, z and y are the independent
variables, z being replaced by the function (3); cf. § 5, Theorem.
Under this hypothesis we bave:

® u = const. (= 0).
For, u=Flz, vy, f(x, )],
and the value of the right-hand side, by (4), is 0. Hence
) du = 0.
; 02 g, 0
("i) —azdm+aydyl

where 9z/0x and 0z/0y are the derivatives we wish to find, and
moreover dx and dy are independent infinitesimals,

Returning to (6) we now substitute for du its value from (7), and
for dz its value from (¥i); hence

0= Fidz + Fydy + I, g—;dz+§y§dy),

ot (F\ + 7 ggdm +(F'., + F,%\dy =0.

Since dz and dy are independent infinitesimals, it follows that each
parenthesis, by itself, must vanigh:

oz
F1+Fzé;=0, F’_’_F'g;’uu
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Hence
oF
oz ox
® T
0z

with a similar equation for dz/0y.

This is the theorem concerning the differentiation of implicit fune-
tions, which we set out to prove. Observe that, in the differentiation
on the left-hand side, the independent variables are z and y; whereas,
in the differentiations on the right-hand side, the independent
variables are =, ¥, and z.

Both theorem and proof apply to the case of any number of vari-
ables. Thus if

(9 F(z,y) =0,
oF
dy_ oz

(10) _ =" F"
oy

It is often convenient to designate the dependent variable in the
explicit form by u:

Flu, 2, y,2,.-)=0,
11 t t
a {nn
Then

oF

ou_ _ox

(12) A e

u

with similar formulas for ou/dy, 0u/0z, ete.
Ezample. Differentiate z partially, where

2 2 2
LA AL )

at »r e
Here -
2 Z
F(z, 9,2 =%z-\—%z-\- b
and we have:
22 2:3_z=0 Qﬁ____ﬁ_‘!’,.
@ aox oz a*s’
o dy y Vs
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Remark. We might equally wall have assumed the implieit
equation in the form
F(u, @, 9, % ) =C,

where (' is a constant. The result, (12), would be of the same -
form.
Thus, in the above Example, we should have: "

2 3
F(’-': ¥ z)=;m':+%+:'§9

the remainder of the work being as before,

EXERCISES
1 v,
1. If pv C, find ap
8. If z is defined by the equation
2 -+ y’ = 351/1:
find =
s If ye ' = sinz, find %.
dz
4« If u = f(zu, ¥
show that - Ou_ _wfilany)
oz 1 —zfi(xu, y)
5. If u=f(x—u,y—u), ﬁnd%;.‘..
8. Show that, if F(z, 9, 2)=0,
% _ _ FuyFi—2 FF\Fy + FuFy
ox? ] ’
and compute ﬁ— and Z;:

10. Continuation. Simultaneous Equations. Let the functions u
and v be defined by the simultaneous equations:

@ Flu, v, 2, y)=0, ®(u, v, 7, y)=0,
where F and ®are continuous, together with their partial derivatives

of the first order, in the neighborhood of a point (u,, v,, %4, ¥,), and
both vanish there:

@ F(wy: 3y %) Yo} 0, @ vy, V) %) Yo) = 0.
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We will demand furthermore that the Jacobian determinant,

oF oF
ou ov (F, ®

@ T=lo 2|~ 7@y’
ou ov

be different from 0 in the above point. The explicit functions shall
be denoted by fand ¢:
@ . u=f(2, ¥), v = (2, ).
Thus we have the identities:
6) FLf= ), ¢z, 9), 2 9]=0, eLf(= 9), $(2, ), %, 9] =0.
The problem is to compute the derivatives of the first order of
the functions u and v, namely,
S T )
ox’ oy’ oz Oy
The procedure is similar to that of the preceding paragraph.

Let . U=F(u,nvzy), - V =y, v, 2, y).

Then

(6) AU = Fydu 4 Fydv 4 Fyde + F, dy,
dV= d’ldu + ¢2dv + @3(117 + @4dy.

These equations hold, no matter what the independent variables
may be. In particular, then, we may replace v and v by the fune-
tions (4). We then have

@ U = const. (= 0), V = const. (=0),
and hence dU=0, dV=0;

" ou Cu o
(@) du ...5-da:+a dy, dv=a—d:z:+a dy.

On substituting these values in (6) and collecting terms, the fol-
lowing equations result:

[F'l bu \ g, 5 L F]dz +[F1

with a similar equation, in which # is replaced by ®. Since dz and
dy are independent infinitesimals, the individual brackets must all

a“+17',a +F’]dy 0,

be 0. Hence
anu+Fzgv+F':=0
® on L)

«Ha +¢aaw+°a
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with » similar pair of equations for 8u/dy and dv/dy.
On solving these equations we find :

Fy le IF'4 le

u_ 1% o ou__ %,
(9) ox F.l Fg 4 ay— Fl .I"’
¢ 9 ,‘1’1 @,

with similar equations for dv/0z and dv/dy.

We have assumed two variables, > and y; but the number here
isarbitrary. We may have a single variable, # ; or we may have three
variables, z, ¥, z; or any larger number. Moreover, both theorem
and proof admit immediate extension to the case of n equations,
defining a system of » functions. Thus, if

)

Flu,v, w2, 9,)=0,
(10) ®(u, v, w, 2, y,-+) =0,
Y(u, v, w, ¥ )=0,
define the functions
u=r(z ¥ ) v=29(%9, ) w=y(z, y,),

we have:

F, F, F F, F, F
@, @ @ o @ @,l
Ay fu_ 1% Y W) lu_ (W W W gy
F, F, F oy F, F, F;
& @ o @ b B
v, ¥, ¥, W, ¥ Uy

where the denominator is the Jacobian determinant with respect to
u, v, W, .

oF oF oF
ou v ow

_|e e de|_omew

(12) J= ou odv ow o(u, v, w)’
v v 0w
ou Oy ow

which is required to be different from 0.

Second Method. We have deduced equations (8) by the method of
differentials. It is, however, possible to obtain them directly from
the identities (5) by differentiating the latter equations partially with
respect to z by the theorem of § 4, This method has the advantage
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that the computation is thus systema.tm,]ly arranged, and so there is
less chance for numerical errors to creep in,
Ezample. Given the equations:
wto=y,

Ptyu=a.
Ou_
1‘0 find =
Py

Differentiating these equations with respect to =, we have:

ou ov

3u23z —+v-_0

Hence — =

EXERCISES

1. Compute du/dy in the Example of the text.

2. If zu? + Yo = 2y, find 2.

yut — 2t = 2%y, oy
CIf U 4w — v =213, & dd__u_
3 { VE—2v 4 u =2 o dz

4. Compute Ov/dx and dv/dy in the Example of the text from
Equations (9).
5. Compute 9v/ox, dv/8y, dv/0z from equations (10).

11. The Inverse of a Transformation. The idea of a transforma-
tion of a plane has been set forth in the Analytic Geometry, Chap. XV,
p. 330, and the student should be familiar with the examples there
discussed and with their analytic treatment. Moreover, he should
of his own initiative extend the simpler of these examples to spacé
of three dimensions, availing himself of the treatment of the analyti-
cally kindred problem of the transformation of coordinates, given
in the last chapter, p. 592. .

These examples illustrate what is meant in the general case by
the transformation of a region § of one plane on a region X of the
same or a second plane. Let P: (u, v) be any point of §, and let
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Q:{(m, y) be the point of X into which P is carried by the given
tranaformation. Then z and y are functions of v and v:

v %= f(u, '”)7
1
‘- ¥ We will assume these functions to be
continuous, together with their first

Fra. 3 partial derivatives, and we will de-
mand, furthermore, that the Jacobian determinant,

g u

J= ou Ov|_ 0(z, z!’
o 94| 0(u,v)
ou Ov

vanish &t no point of 8.

Since by hypothesis the relation of the points of § to those of 3
is one-to-one, an arbitrary point @: (x, ) of = leads to one and only
one point, P, of 8. Hence the coordinates of P, namely, » and v,
are functions of those of Q, i.e. z and y:

@) { u=F(z,y),

v=®(z,y),
and these functions are continuous, together with their first partial
derivatives, as will be shown in detail later; § 12.

The pair of equations (2) expresses explicitly the transformation
of the region ¥ on the region 8. This transformation is called the
inverse of the given transformation, which is expressed analytically
by equations (1).

Even when f and ¢ are simple functions of % and v, it is often
impossible to express F' and ® in terms of the functions with which
we are familiar, and so the derivatives of F' and & must be com-
puted indirectly. This can be done by the method of § 10, for we
need merely set
® Sy, v)—~x=0, o(u, v) —y=0.

It is instructive, however, to apply the second method there set
forth. If we substitute for v and v in the firat equation (1) the
functions F'(z, y) and &(z, y) respectively, we have an identity in
zand y: i
) 2=f[F(y), ®(=y)])

i.e. in the last analysis, the equation zes 2z, We may, therefore,
differentiate e¢ach side of this equation, which we will retain in the
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form (1), partially with respect to «, according to the theorem
of §4:

: 0xdu  Oxdv
® = Putz " 02’
and it is important to understand what these partial derivatives
mean. In &%/du, the independent variables are « and v, and the
dependent variable is the function = = f(u, v). In fu/dz, the inde-
pendent variables are # and y, and the dependent variable is the
function v = F(z, y). Similarly for the second term.

Equation (5) is an equation for two of the unknown derivatives,
du/0z and Ov/0x, which we are trying to find, in terms of deriva-
tives of the given functions. A second equation connecting these
unknown derivatives can be found by the aid of the second equa-
tion (1). Here we have the identity in z and y:

(6 y=¢[F(z,y), (=, 9]
Hence, differentiating this equation, written in the form (1), par-
tially with respect to z, we have:
=y ou  dydv,
™ 0—9u3w+3vax
Equations (5) and (7) are a pair of simultaneous linear equations

for the two unknowns, du/dz and dv/0x, and they can be solved by
the methods of high school algebra.

Example. Let the given transformation be represented by the
equations :
®

corresponding to (1). The inverse transformation will then be given
by the equations:

(i)
corresponding to (2).

To find the derivatives by the method set forth in the text, differ-
entiate each of the equations (i) partially with respect to «:

{ z=3u— 89,
y=2u——5v,

u=—5m+8y,
{ v==—=224+3y,

ou ov
1=3% %%
0=2%_5%

o0z éx
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On splving these equations for du/dz and ov/9» we find:
ou

—=— ,——==—2.

o o

The result agrees with that which can here be obtained directly
by differentiating the equations (it) with respect to .

The stadent should verify equations (4) and (6) in the case of this
example.

EXERCISES
1. If e=ut
2 y=u+4 v,
find 722.
ox
' z=u+4v+w,
2. If y=u? v 4wt
z=ud4 3 4+ ul,
ou vw(w — v)
sh t —
ow tha ox (u—v)(v —w)(w— u)'
ou ou
and Ty —
compute 5y 7
8. If { B =t e
y=u,

find 9v/0y by the method of the text.

Solve the given equations for » and v, and verify the result ob-
tained for dv/dy by direct computation of this derivative.

4. Verify equations (4) and (6) of the text for the case of the trans-
formation given in the preceding question.

12. An Existenoe Theorem. In § 9 we have considered an implicit
function defined by the equation

@ F(u, 2, y)=0,
and we have assumed that this function,,
@ u = f(3, ),

s continuous together with its first partial derivatives. Very sim-

ple examples suffice to show that equation (1) may not give rise to
such a function as (2). Thus the equation

® F(u, o, g)m v 4+ o+ 4 Lo 0
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bas no roots, for the sum of three squares cannot be equal to — 1.
Again, the equation .
@) F(u,z,y)=u 4224yt =0

admits only the single solution, (0, 0, 0), and so, again, fails to define
a function (2). Finally, the equation

®) F(u, 2, 9)=(u -2y + 92 =0
defines, not a surface as represented by (2), but a curve, namely,
(6) u=a, y=0. ‘

Is it possible to tell from simple properties of the given function
F(u, 2, y) when equation (1) will define a function (2) with the proper-
ties presupposed in § 9? The answer is affirmative, and is given
by the following theorem.

TrroREM. Let F(u,z,y) be continuous, together with its first
partial derivatives, throughout a ceriain neighborhood of a given point
(gs Ty, Yo)- Let F vanish at this point, but let 6F/0u de different from
0 .

M F(uy, %, yo)= 0, F (ug, o, Yo)# 0.
Then there i3 a function of = and y,
(8) u=f(z, y),

continuous throughout a certain neighborhood of the point (i, ¥,) and
taking on the value u, there:
uy = f (%, Yo)s
which function salisfies the equation
@) F(u, z,9)=0;
i.e. if f(x,y) be substituted for u in the given function F(u,x,y), the
latter vanishes identically
109 F[f(x y), 2 y]=0.

Moreover, the only triples of valuss, (u, %, y), which lie in the neighbor-
hood of the point (v, %,, ¥,) and satisfy equation (9) are those which
are connected by the equation (8).

Pinally, this function, f(z, ¥), has continuous jirst derivatives.

This theorem would seem in one respect to be unsatisfactory, in
that it does not tell us how large these “ neighborhoods ” ave. The
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neighborhood of the point (v, #,, 3) may be taken as the pointe of &
certain rectangular parallelepiped :

|Jz—ml<d, |y—wm|<4, |u—u|<B

where 4 and B are two constants which may have to be chosen very
small. And then the function f(z, y) is to be considered only for
the points of a certain square,

|2 — 2] <h ly—wl<h,

where k is surely not greater than 4, and may be less. These re-
strictions, on the one hand, lie in the nature of the case. The
theorem is not true in general if they be removed. On the other
hand, the theorem, restricted as it is, is nevertheless exceedingly
useful in practice.

Of course, the number of variables (, y, :--) is arbitrary. If F
depends only on two, F(u, z), then f will depend on one,

And if Fdependsonn +1, F(u, =, .-, x,), fwilldepend onn:
u==f(zy, -+, x,).

A proof of this theorem and the following will be found in
Goursat-Hedrick, Mathematical Analysis, Vol. I, Chap. II, § 20, and
in the author’s Funktionentheorie, Vol. I, Chap. II, § 4. The latter
treatment lays stress on the geometrical interpretation of the
analysis employed.

The partial derivatives of u are computed by the method set forth
above, in § 9, and the formulas (8), (10), (12) there obtained give the
solution of this part of the problem.

Geometric Evidence. In the simplest case, namely, that in which
the number of variables is two, and it is thus a question of showing
that the equation

(11) F(u,2)=0
determines a curve,
(12) u=f(z),

it is possible to make the truth of the theorem plausible geometri-
cally as follows. Consider the surface,

z = F(u, z).

This surface meets the coordinate plane z = 0 in the point (u, @, %)
=14y, &,, 0), and it is not tangent to it there, but actually cuts it at
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an angle. For, the direction components of the normal to the
surface are proportional to F(u,x), F,(u,x), —1, and since
F (uy, 2,)== 0, the normal cannot be perpendicular to the axis of w.
Since the surface, moreover, is smooth in thd neighborhood of the
point in guestion, we should expect any oblique plane to cut it in
a smooth curve. Finally, we see, if this be granted, that the curve
is not perpendicular to the z-axis at the point in guestion, and so it
is reasonable that its equation be expressible in the form (12).

The case of the inverse of a given function, which we have met
repeatedly in the study of the Calculus, could be related directly to
the foregoing, butis better dealt with as follows. Let 2 be given as
a function of u, " \
(19) 5= (1), vr;#@_

where ¢(u) and its derivative, ¢'(u), are continuous at © o
u=uy, and ¢'(u)+ 0. Then the equation defines u as Fio. 38

a function of =, continuous and having a continuous first derivative
in the neighborhood of the point # = «,, where », = ¢(%,). For, the
eurve which is the graph of equation (13), u being plotted as the
ordinate and = as the abscissa, has a tangent at the point (u,, o)
which is not parallel to the w-axis. Hence a line ¢ = «', where o'
differs but slightly from z,, will cut this curve in just one poin,
and the ordinate of this point will be the inverse function

(14) u=f(2).

Simultaneous Equations. The theorem admits extension to a si-
multaneous system of p equations which determine p implicit funé-
tions. For definiteness, we state it for the particular case, p = 3.

TaroreM. Let the functions

Flu, v, w, 2, 9, --+), & (u, v, w, 2, Y, ), W(u, v, w, , Y, *+*)
be continuous, together with their first partial derivatives, throughout a
region,

(13) ju—u|<B, |v—7|<B, |w—w|<B
2 —m| <4, ly—wnl<4, -
and let them all vanish at the point (ug, Vg, We, Ly, Yo, +=+); let the Jaco-

bian determinant
n tnant, J=3(F’Q q,),
2 (u, v, w)

be different from O there. Then there exist three funclions
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() w=fm,y, ) v (@ Y, ), W=y Y, )
each continuous throughout a region
(15) le=&i<h ly—ml<h - hs 4,
and taking on the respective values uy, vy, w0, in the point (g, Yo, +>+),
whick functions satisfy the simultaneous equations
(16) F(u, v, w, x, 9, - )=0, @(u,v,w, 2,y )=0,
¥(u, v, w, 2, Y, -+-)=0.

Moreover, the only sets of values (u, v, w, @, y ---) which lie n the
region (18) and satisfy the equations (16) simultaneously are (pro-
vided A and B are suitably restricied) such as are given by equa-

tions (14).
Finally, the functions (14) have continuous first partial derivatives,

The derivatives of the functions (14) can be computed by the
method set forth in § 10.

The Inverse of a Transformation. Let the transformation
an 2 = f(u, v), y=(u,)

be given, where f and ¢ are continuous, together with their firat
partial derivatives, throughout the neighborhood of a point (v, vg),
and let =, ¥, denote respectively the values of these functions at this
point. Let the Jacobian determinant,

L]

J =20 ¢)

2(u, v) ’

be different from 0 at (ug,v;). Then the inverse of the transforma-
tion (17) is represented, in the neighborhood of the point (uy,vy)
and the point (zy, ¥), by two equations,

(18) u = F(x,y), '”\= ®(z, y),
where F(x,y) and ®(x,y), together with their first partial deriva-
tives, are continuous throughout a certain neighborhood of the point

(%0 %0)- :
The theorem holds for a similar transformation in any number of

variables :
(19) 4 L) =ft(“h Y “q)’ i=1,2, "'; n
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13. Concerning Jacobians. The Jacobian of a set of p functions
of p independent variables, as (p = 3):

1) u = f(z, y, 2), v=¢(z, Y, 2), w =y (%, Y %),

namely, the determinant

ou du Ou

oz Oy oz

ov oy v

oz dy oz |

w0 du

ox 0y Oz

is often represented, as we have repeatedly had occasion to remark,
by the notation

@) J=w v w),
o(z, y, 2)

It %, = (415 >y Ya)s t=1, .y n,
and = ¢‘(CB1, ) zu)v =1, m,
it can be shown that
® O(uyy 2oy up) _ 8wty ey %) O(Y1y oy Ya),

O(zyy sy 2,)  O(Y1y vy Ya) O(T1, ooy 2)
Cf. Jordan, Cours d’analyse, Vol. I, 3d edition, 1893, p. 89. It is
assumed that the functions f, and ¢, are continuous, together with
their first partial derivatives.
If the equations

4) z, = f,(h1, ***) Ya)s t=1,
represent a transformation with non-vanishing Jacobian
j= a(zly i} 17.2

a(yh "ty yn)’
and if the inverse transformation be given by the equations
(5) = ¢l(zh Rt ] xﬁ)! i= 1’ reny By
then the Jacobian of this transformation,

3(}21» it ) E-)

= O(Tyy +oey o)
is the reciprocal of j: .
0) =1, o J=1

J
For here u =T, i=1, .y,

and thus the left-haud side of (3) reduces to unity.
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. Geometric Mearing of the Vanishing of the Jucobian. LConsider the

squations
v =7s(2, ¥), v= (2 9),
where f and ¢ are continuous, together with their first partial de-
rivatives, throughout the neighborhood of the point (=, ¥), and let
ty = f (%o Yo); Vo= (g, ¥%). If the partial derivatives of S do not
both vanish there, the equation
J(® ) —u=0,

where u is a parameter to which are assigned values near u, yields
8 one-parameter family of curves coursing the neighborhood in
question, one and only one curve going through any given point of
this region, and each curve being smooth and free from multiple
points. For, the above equation can be solved for y in terms of »
and wu, or else for z in series of y and u, the function thus obtained

being continuous.
Similarly, if the partial derivatives of ¢ are not both 0, the

equation (@, y) —v=0
represents a second family of the same character.
The curves
f(z:y)_uo=0: ¢ (=, y)"'v0=0
will be tangent to each other at (2, y,) if and only if
f P ¢¢ =f ] : ¢y
thers, i.e. if and only if the Jacobian
¥>
ox oy
il FY
ox Oy

vanishes there,

The assumption that J= 0 at (=, ¥,) carries with it, becaure of
the continuity of this function, that J does not vanish at eny other
point of a suitably restricted neighborhood of (xy, ¥,), and hence the
two curves, one from each family, which go through an arbitrary
point of this region cut each other at an angle which is different
from 0 or . It is plausible geometrically, therefore, that these
ourves can have no second point of intersection in the neighborhood
of (s, %) ; for, the directions of the curves of one family vary only
slightly from one another; and similarly for the other family. But
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this means precisely that the equations (1) admit a single-valued
inverse. For it says that, to an arbitrary pair of values (u,v) near
(%0, ), there corresponds one and only one pair of values (z,y) near

(%0, ¥o)-
If three equations be given:

u = f(z, y, 2), v =¢(2, ¥, 2), w = yY(, Y, 2),
where f; ¢, y are continuous, together with their first partial deriva-
tives, in the neighborhood of (ay, 3y, %,) and the derivatives of no one
of the functions are all zero at this point, then each of the equations
represents a one-parameter family of surfaces coursing the region in
question, one and only one surface going through each point of the
region.
The vanishing of the Jacobian,
— (u, v, w)
o,y 2)
here signifies that all three surfaces are tangent to the same line.
For, if no two of the surfaces are tangent to each other at the

point in question, the direction components of the curve of intersec-
tion of the first two will be :

LN 5L A Lo A,
¢ ol ¢ 1| ¢ b
and if J =0, then
LN 5 4 ﬂﬁ
e &l TP e TP

or, the normal to the third surface is perpenchcular to this eurve.

We see, then, that, if J =0, no two of the surfaces can be tangent,
and the curve of intersection of two of the surfaces cuts the third
surface obliquely. And now reasoning similar to that of the fore-
going case leads to the inference that an arbitrary set of values
(u,», %) near (ug, vy, w,) gives rise to surfaces which cut in one and
only one point in the neighborhood of (%, %, %). Hence the in-
verse transformation is also single-valued.

In the case of a transformation (4) with » > 3, the geometric evi-
dence is lacking, since we should need a space of n > 3 dimensions.
The analytic proof, however, applies equally well, no matter how
large n may be; cf. Goursat-Hedrick, Mathematical Analysis, Vol. 1,
p- 45, § 25, or the author’s Funktionentheorie, Vol. I, Chap. II, §§ 5-7.
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Tdentionl Vanishing of the Jacobian. If the Jaocobian of the fune
tions (1) vanishes identically, these functions are connected by a
relation Q(u, v, w)=0,
where O is continuous, together with its first partial derivatives.

The theorem holds for any number of variables. Cf. Jordan, L. ¢,
and the author's Funktionentheorie, Vol. 11, p. 122.

14. A Question of Notation. Problem. Suppose
u=f(2, y), y=9¢(, 2);

to find 2. ~
ox

Before beginning a partial differentiation the first question which
we must ask ourselves is: What are the independent variables?
Hitherto the notation has always been such as to suggest readily
what the independent variables are. In the present case they
may be:

(@) zandy; or (b) zandz; or (¢) yandaz
We can indicate which case i3 meant by writing the independent
variables as subscripts, thus:

@ L @) %
In case (c) g—: has no meaning.
In case (a), %’= 5z, v).

Case (b) can be brought directly under the method of § 4 by in-
troducing a new letter in representing the independent variables of
the second class :

w=1(z,9), { E‘:"i';ﬂ;::; za:il;lu of

z=r, y=9¢(r2), { ::g;r;emf Z:-’rigt.ﬂas of

Thm%nowbecomugl;andmmwmpummm usual
nanner o _ a—! ?—m o Qs

o omor + dyor’

‘ ou Ou,, , Ju, 09
= : Frialy i v =
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In Thermodynamies, the pressure, p, the volume, v, and the tem-
perature, ¢, are connected by the so-called characteristic equation,
¢(p, v, ) =0,
and so only two of these three variables can be chosen as indepen-

dent. It may happen that the pressure can be expressed as a func-
tion of the temperature and the energy, E:

p=F(, E),

and that it is convenient to express the volume by the characteris-
tic equation as a function of ¢ and p:

v=®(t, p).
A notation which the physicists use to express &, and &, is:
0 0
<a—:’> for -g? = ®,(t, p);

0 0
( d; for a’;; =@yt p),

the subscript indicating the variable which is held fast.

EXERCISES
1. If u=2zy
and 224+3y+52z2=1,

explain all the meanings which 6_:; may have, and evaluate this

derivative in each case.

2. Show that
(?2) —_tpvt,
&’ P ba(Dy v, )]
Prove:

o0\ _ (% )
( o), p)

18. Small Errors, In the case of functions of a single variable
we have seen that the linear term in the expansion of Taylor’s
Theorem :

@) =5(@0) + S (@)@ — @) + -
can frequently be used to exprese with sufficient accuracy the effect
of a amall error of observation on the final result, cf. Introduction in
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. .
the Caloulus, p. 417, §18. This term, f'(x)(® —a), is precisely
the differential of the function, df, for z = ay.

The differential of a function of several variables can be used for
a similar purpose. If =, y, «-- are the observed quantities and « the
maghitude to be computed, then the precise error in « due to errors
of observation Az = dw, Ay = dy, ete. is Au. But

du=-—-da:+audy+

will frequently differ from Au by a qua.ntity so small that either is
as accurate as the observations will warrant,—and du is more
easily computed.

Ezample. The period of a simple pendulum is

T=21r¢£—-
g

To find the error caused by errors in measuring Z and g, or in the
variation of ! due to temperature and of g due to the location on the
earth’s surface.

Here dl=-F_ai-T ng
Vig g\/ ’
or
dT_1dl_1dg
T 21 2¢’

and hence a small positive error of kX per cent in observing ! will
increase the computed time by }% per cent, and a small positive
error of X’ per cent in the value of g will decrease the computed
time by } %' per cent.

EXERCISES

1. A side ¢ of a triangle is determined in terms of the other two
sides and the included angle by means of the formula:

t=g?4-b?—2abcosw
Find approximately the error in ¢ due to slight errors in measuring
a, b, and w. Ans. The percentage error is given by the formula :
d_cu(a — bcos w)da 4+ (b — a cos w)db 4+ absinmdw_
¢ a?+ b2 —2aboosw

8. Find approximately the error in the computed area of the tri
angle in the preceding question.
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8. The acceleration of gravity as determined by an Atwood’s
machine is given by the formula:

28

g:—-

1

Find approximately the error due to small errors in observing s and t.

4. Describe an experiment you have performed to determine the
focal length of a lens, recall the relative degrees of accuracy you at-
tained 1n the successive ohservations, and discuss the effects of the
errors of observation on the final result.

16. Directional Derivatives. Let a function
u = f(z, y)

be given at each point of a region § of the #, y plane and let a curve
C be given passing through a point P: (xy, y)
of the region. Let P’ be a second point of C,
and form the quotient:
YUp — Up,
PP 4 o
The limit of this quotient, when P’ ap- Fio. 51

proaches P, is defined as the directional derivative of w along the

curve C. Weset up —up=Au, PP = A¢, and write

im A% ou
A;*oAE 6{

If, in particular, C is a ray parallel to the axis of = and having
the same sense, the directional derivative has the value of the partial
derivative, du/0x; if the ray has the opposite sense, the directional
derivative is equal to — du/dz. A similar remark applies to the
axis of y.

To compute the directional derivative in the general case we make
use of the Lemma of § 3; hence

:13;—03? = gz(aw Af) (M-mf}

ou ou ou
(€)) % =7, 08¢ +—§sma.

The extension of the definition to space of three dimensions is im-
mediate. We bave:

or
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, Bu v du fu
& "5 %

where a, 8, y are the direction angles of O at P.

cosB+ C08 ¥y,

EXERCISES

1. If a normal be drawn to a plane curve at any point P and if #
denote the distance of a variable point of the plane from a fizxed
point O; y, the angle between PO and the direction of the normal,
show that

or
®) = o8y
2. Explain the meaning of ?Ln and show that
8n _or
@ or = om

17. Potential. Let a particle of mass m be sitnated at the fixed
point 4:(a, b, ¢), and let a second particle, of mass unity, be situ-
ated at the variable point P: (x, y, 2), distant » from 4. Then the

< force with which these particles attract
P(#¥2) each other, measured in gravitational
Al units, will be
c 1 = m,
e n
!/‘ -7 Consider, in particular, the force which
Fia. 38 the particle at 4 exerts on the particle

at P. 1ts components along the axes will be

— —b -
@ X=—wi3Zf Ve—wlZl, Z=-mi3%S

If we consider an arbitrary direction from P, whose direction
angles are @, 8, y, the component of the attraction along this direc-
tion will be o= Fcos .,

where ¢ denotes the angle between the direction and PA. Since by
the cosine formula (Analytic Geometry, p. 426)

—a — —
. m‘g_g_rws“_umsﬁ—.z_;_ccosy'
r

we have
()] H=Xcosa+Ycos R+ Zoosy.



PARTIAL DIFFERENTIATION 145

Let us form the function

(4) u ="!""
r

known as the potential of the mass m. Its partial derivatives are

seen to give precisely the components of the attraction along the
axes:

ou mor
5 ey
@) ox 72 oz’
1= @ o)t + (U — O (e
or _ _ ir _z—a,
I i@ =
ou_ [ m\fz—a\__ z—a_,
hence 8:::—( ﬂ)( - )_——m = =X
Similarly,
u_ du_ 5
oy oz

On substituting these values of X, Y, Z in (3), the right-hand side
becomes ,
u

ou du
amoosaz+@cos,3+—a; cos .

But this is, by (2), § 16, precisely the directional derivative along the

given direction, or ou, Hence
6 % 7=
( ) = a_f’

and we thus have the theotem : The component of the attraction dus to
the mass m, situated at A, is given by the directional derivaiive of the
potential function (4), taken along the direction in question.

The Case of n Masses. 1If, instead of a single mass at A, there are
% IAsses, Mm,, -, M,, situated respectively at the points 4, -+, A,
then the potential of these masses at the point P is defined as the
function u, where

M My e T
@ v r1+r,+ +r' gn.

r, denoting the distance from P to 4,:(ay, by, &) Thus
(@ ~a)t +(y — b)* +( — et
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The components of the attraction on a unit particle at P are given
by the same formulas as before, namely :

ou_ ‘u u_ g,

® %—X’ oy Y, PP Z;
=%,
(10) R=i

It will be shown in Chap. XI, § 2 that the change in the value of
the potential function, when the unit particle at P describes an ar-
bitrary path, is equal to the work done on this particle by the forces
exerted by the n masses, and hence this function u is sometimes

called the force function.
EXERCISE
Show that the potential function satisfies Laplace’s Equation :
Py, Ou  Pu
72 + ﬁ + e

The student will find elaborate applications of partial differentia-
tion, taken from life (differential geometry, mathematical physics),
in Goursat-Hedrick’s Mathematical Analysis, Vol. I, Chap. IL

0.

EXERCISES ON CHAPTER V

1. If u=c_o_§_y
z
and r=17r2—3, y=e,
ou
find P
2. If u = e+ rlog(z + ¥)
and 5 z=pgr, y=rsin’(gr),
find 2%
99
s. If ya¥ =ginz,
d
find %Y.
nddz
w4 af =3y,
I [u’+17'+y‘=-3m,
find Ou,



show that

11. If

find 2%,

oz
13. If

explain all the meanings of

PARTIAL DIFFERENTIATION

V= 2 uv

w4+ b =3y,
v+ PP =—32

u + zv =y,
P+yu=2,

‘{ue’ + vz = ysiny,
wecos u =2+ 32,

u+uv=v<4e,
v’—:w=u—:v’,

r=u-+v+w,
y=u? 4+ 1%+ ul,
2= ud 4+ 4 ud,
u_ " vw(w—v)
ox  (u—v)(v—w)(w—1u)

z=u+v+w,
Y= uv + YW + wy,
7 = uvw,

T=u 4 VU,
y=v—uvy

u=zt+yt+28  and  a=ay,

ou,

0z

14i
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s { 228 {2, ¥),
$(z, y) = 0,
#og 0209
show that e 0z oz,
@~ %
oy
14, If u=f(z+ o, y + Bt), .
ou_ Ou, o0u
show that , 5=¢$+B@;
Pu_ 20
w2 Bama +'3'ayz
and obtain the general formula for aa't“
15. If u=f(y + az) + ¢(y — az),
Ay _,0%u
show that 7 aay2
. =rl¥
16. If u f(m)’
show that a:g'—‘+yg'f=0.

-

17. Use the method of differentials to find 2% a“ Z“, and %‘t‘ i
terms of fi(¢, 3), fo(é, 9), if
u=f(z+ut, y — ).

18. If u is a function merely of the differences of the arguments
Z;, 3, ***) %, 8how that
ou u

9x,+ L +5 =0

19. If u = f(=, y) is homogeneous of order n, show that

tu Sy
z’w+2 azay y’ an(n—l)u

20. Extend the theorem of Questxon 19 to the case of homogene
ous functions of three variables.
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91. Extend the theorem of Question 19 to the case of derivatives
of the third order.
22. If v and vare two functions of # and y satisfying the relations:
u_to  u__
ox oy oy ox
show that, on introducing polar coordinates :

T =rcos ¢, y=rsin ¢,

ou 1ov 16u o

or rdp’  rog or

we have

23, Under the hypotheses of the preceding question, show that

100, 120
61-2 ror  rogt

24. If
S, y9=0 and ¢ (z, 2) =0,
Opofdy 0104
show that 0x 8y dz Ox oz
25. If d(p,v, 1) =0,
potdv_ _
show that Tt 1

Explain the meaning of each of the partial derivatives.

28. If v is a funetion of #, y,z and «, y, z are connected by a
single relation, is it true that

ou,, du,_!a_zd ?
83/ 0z Oy

27. If u=f(z,y) and v=¢(x, y) are two functions which sat-
isfy the relations

du_do
ox oy’ dy o
and if ¥ is any third function, show that
il + rV_ Bu B’V 3’
oxt oy 92: 6u’

28. 1f
& == r8in ¢ cos §, y ==rein$sin §, 2=rco8d,
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show that
LAY NG AN LA YO AN 1 oV \2
GG +E) =) +3(@) + i (%)
20, If
z=rsingcosd y=rsingsingd, 2=rcosg,
show that
BV BV GV _oV 12V 1BV 20V cotgdV,
dx2 0 o Ot 1209 rsin?gp 06  ror B 9¢
30. If

dU = 8dS — pdv

is an exact differential (p. 356), and if 8 and v can be expressed as
functions of the independent variables 6, p, show that

%__o 88 __ v
ov s’ op 08
State what the independent variables are in each differentiation.

31. Let z=js(, u), y= ¢, u), 2=yt u),
o(z, y
d 2 0.
an o(t, u) *
If z2=¥(x, y)
represents the relation connecting #, y, 2, show that
8_z=3(z, ¥) /o(z, y) _@g:a(w, 2) /0(z, ).
oz 0@, u)/ o(t,u)’ oy 9(t,w)/ 9(t, w)
s2. If
u = f(z, y, 2), v = ¢(z, ¥, 2), w=y(2, y, 2)
and o =g, p), y=h(, p), z=Fk(), p),
show that

8(v,0) _ O(v, w) Oy, 2) + o(v, w) 0(z, x) + &(v, w) d(z, y)
a(A’ F') 8(3’7 z) a("" I") a(z, ) a()" F') a(w, y) a(k) I")
State the conditions of continuity which you assume,

33. ]_Z:et

" =_f(a:, v, v=¢(z, ¥),
8(11., 'U! 0
oz, ¥) =

the usual conditions of continuity being assumed in the neighbor-
hood of (%, 3). Show that the Jacobian is positive at (x,, y,) if &



PARTIAL DIFFERENTIATION 151

gmsdl circle about this point, when described in the counter-clockwise
sense, goes over into a small oval about (u,, ), likewise described in
the counter-clockwise senss, But when the sense is reversed, the
Jacobian i3 negative.

84. Let
u=f(z, v, 2), v = $(, y, 2), we= (2, Y, 2),
o(w, v, w) £0
ox 9, 2)

the usual conditions of continuity being assumed in the neighbor-
hood of (zy, %, %). Show that the Jacobian is positive at (@, ¥, %)
if the positive directions of the curvilinear coordinates (u, v, w) are
oriented there as the positive directions of the (z, y, z)-coordinates;
otherwise, the Jacobian is negative.

85. If F'(u,v, x, y) and ®(u, v, 2, y) are two functions which satisfy
the conditions of § 10, show that
o(F, @)

o(u, v) - o(z, ¥)

o(z, y) 3@({', ¢)2
u, v

I8 the corresponding theorem true in the general case, n=n?
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CHAPTER VI )

APPLICATIONS TO THE GEOMETRY OF SPACE

1. Tangent Plane and Normal Line to & Surface. (a) Eaxplicit
Form of the Equation of the Surface. Let the equation of the sur-
face be given in the explicit form,

@ z=[(=, y)-

Then the equation of the tangent plane at the point (xy, o, 2) is
(cf. Froduction to the Calculus, Chap. XV, § 3):

@) r—n=(3) =) + (2 ) 0 30
The equation of the normal line at the same point is
(3 T—% __Y—% __*—2%,

@ @G

Finally, the direction cosines of the normal at an arbitrary point

(=, y, z) of (1) satisfy the relations:
: ccosy =20, _

Y] cosa.cosﬁ.eos;:_az.ay.

(b) Implicit Form. 1If the equation of the surface is given in the
implicit form,
(6) F(z,y,2)=0,
it follows then from (2) and the expressions for the partial deriva-
tives, Chap. V, § 9, (8), that the equation of the tangent plane is

(6) (F)(x %)+<F)(y yo)+< )(z—zo)'=0

For the normal line,
) 2% Y¥—% _%2-%

@ & &

and for the direction cosines of the normal at (x, y, %),

(8) coBx:CO8B:CO8ymm— I (-
1562
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(¢) Parametric Form. Let the equation of the surface be given in

the parametric form
€)) z = f(u, V),

y= ‘#(“’ ”)’

= "’(u’ v),

where f, ¢, § are continuous, together with their first derivatives,
and where, moreover, at least one of the two-rowed determinants

out of the matrix

of o oy
10) fu Ou Ou ,
o o oy
v Ov Ov -
i.e. at least one of the Jacobians
(11) a(y7 z) 3(2, z) 3(&:, ¥)
o(u,v)’  d(w,v) O(u,v)

is different from O at the point (u,, vy) corresponding to (zy, ¥, 2).
Then the equation of the tangent plane, as will presently be shown, is

12) (282N  —z)+ (2B (g — g+ (2ED) ¢ —2) =0.
1) (G22) @-w+(Go0) g—w+(5ms) 6w =0
The equations of the normal line are
T—% _ Y~% _ =%
(13) (8(3/, z)) (_i:’gz, z)) (8gm, 1/))
2w, v)jo  \9(wv) )0 \9(% ¥)/o

The direction cosines of the normal satisfy the relations:
0,2 0(%, ) o=, ¥),
o(u, v)  d(u, v) 0(u, v)
The proof is given at once by Chap. V, p. 150, Ex. 31, from which
it follows that (14) is true,

(14) cosa:cosB:cosy =

EXERCISES
1. On writing the equationus of the sphere z* + y? 4 22 = a? in the
parametric form:

2 == @ 8in ¢ cos §,
show that the normal at an arbitrary point goes through the centre.
Are thers exceptions?

2. Express the equations of the torus parametrically, and show

that the normal at any point goes through the axis. Are there ex-
ceptions ?

y ==asin¢sin §, 2 == Q COS ¢,
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2. Analytio Representation of Space Curves. A ourve in space
may be given analytically by expressing its coordinates
(a) as functions of a parameter:

@ 2=f(), y=¢1), z=y@);
() as the intersection of two cylinders:

@ y=4(2), 2= §(2);
{c) as the intersection of two arbitrary surfaces:
3 F(z, y, 2)=0, (2, y, 2)=0.

A familiar example of (a) in the case of plane curves is the cycloid ;
algo the circle. In the case of space curves we have the helix:

@ z=acosd, y=asing, z=D00.

This curve winds round the cylinder 2? + 32 = a?, its steepness always
keeping the same. It is the curve of the thread of a machine screw,
i.e. of a screw that does not taper. Again, if a body is moving under
a given law of force, the coordinates of its centre of gravity are func-
tions of the time, and we may think of these as expressed in the
form (a). But the student must not regard it as essential that we
find a simple geomstrical or mechanical interpretation for ¢ in (a).
Thus if we write arbitrarily :
t

we get a perfectly good curve, ¢ entering purely analytically.

In particular, we can always choose as the parameter ¢ in (a) the
length of the arc of the curve, measured from an arbitrary point:

) z=f(s), Yy=¢06) z=y().

The form (b) may be regarded as a special case under (a), namely,
that in which

(5) z = logt, y=s8in{, 2=

r=1
On the other hand, it is a special case under (c).

Restrictions on the Functions. 1t is natural enough to require, in
Case (b), that the functions ¢(x) and y(x) be continucus, together with
their first derivatives; and in Case (c), that the functions F(z, y, %)

?}2“'&1’3 , é“)’:n\%\t\}xle conditions of the existence theorem of Chap.V,

. e (a), however, the continui i , etc.
together with tha)t of their first denﬁx;iﬁ:tma:sbﬁ(?nﬂmé
& ourve; for, this condition is satisfied whep all three functions are
oonstants, and then equations (1) represent a point.
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Again, the plane curve
(7) 2=12, y =1, t.e. y’ = z’,
has a cusp at the origin, and yet the derivatives of the functions of ¢
are continuous there,

It is sufficient, in order to avoid all these difficulties, to demand

that the first derivatives of the functions of ¢, —namely, f'(t), ¢'(t),
¥ (£), — never vanish simultaneously, or that

(8 0@+ &) + v,
and this condition shall henceforth be imposed in general. If, ata
particular point of a curve, the condition is violated, such a point

will usually be a singular point, as in the case of the curve (7) at the
point ¢ = 0. But this is not always true, as is shown by the example

9 r=8, y==8 te. z=y.
Here, both derivatives vanish at the origin, but this point is in no
wise peculiar.

To sum up, then, the condition (8) is sufficient, but not necessary.
The proof that it is sufficient lies in the fact that, since at least one
derivative, as f'(t), is not 0, it is possible to solve for t. Here

o = f(to), S(to) # 0.
Hence, by Chap. V, §12, p. 135,
t= w(®),
where o(%)=1 and wo(x) is continuous, together with its first de-
rivative, at the point # =z, On substituting this value for ¢ in the

last two of the equations (1), these go over into the form (2), and
hence we have a curve, q.e.d.

3. The Direction Cosines and the Are. To find the direction cosines
of the tangent to a space curve at & point P: (y, Yo, %), Pass a secant
through P and a neighboring point P*: (% + A%, ¥ + Ay, % + A3).
The direction cosines of the secant are:

e =Sy -y
cos a =?-—P_7, co8 8 =_15_I_)_', 008 y =75F"

and henoce, for the tangent,

i Az : Ax As
cos a hm———shm(-—--——-)=D,3,
= FePP  ra\bs PP



156 ’ CALCULUS - :
with similar formulas for cos 8, c0sy. Thus

da;
(10) 003¢=d—;, cosﬁ=—§, cosy=g-

Here the tangent is thought of as drawn in the direction in which

# is increasing. If it is drawn in the opposite direction, the minus

sign must precede each derivative.
From (10) it follows at once that

(11)  dst=da® + dy? 4 d2®.

This important formula can be proven
directly from the relation

PP = A% + Ay + A2,
If we assume the form (a),

ds*=[f'(6) + ¢'()* + y'(1)] ar*

and
copa o 0]
VIO + $ O + VO
_ $'(t) ,
“ =P T v Vo
cos Y= ﬂt) .
| VI F PO + VO
13 Y NgoErioETicl
Applying these results to (2), we get
(14) & ds
COS o == ;f dz" oosﬁ:::_d.z_d;;‘ COB Yy = dz «
V! g+ i V+EZE i+ Z

-
o
(15) l=' 1+dz“+dm'dz'
L]

The direction cosines in Case (c) are obtained in § 4.
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4. Equations of Tangent Line and Normal Plane. For the tangent
line we have, in Case (a):

1 T—% _Y—Y zo
(16) Pl = 5 =

and in (b):
an  y-vo=(@E-m  s-n=(E)E—a.
The normal plane is given in (a) by
18) S A OO = )+ ) —2)=0;
and in (b) by
19 s—at(F) e-w+(g)E-w=0
On the other hand, the tangent line in Case (¢) may be obtained

most simply as the intersection of the tangent planes to the surfaces
at the point in question:

Go)e—=+(G) o0 +(o)e-==0
()= -+(F)e-amo

These equations may be thrown into the equivalent form:

(20)

T—% Y= 22
1) F, F,| _ | F, F, lF, F,
o, o, o, @, o, o,

Hence we see that the direction cosines of the tangent line to the
curve of intersection of the surfaces (3) are given at (», ¥, 2) by
the proportion :

(22) cosa:eosﬁ:cosyalf: ‘:::

o, @,

¢ @

The equation of the normal plane and the integral which represents
the are, s, can now be written down.
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EXERCISES

Find the equations of the tangent line and the normal plane to
each of the following space curves :

1. The helix (4). 2. The curve (5).

8. The curve: Y2 = 2 ma, R=m -2

4. The curve: 28 +3 2 422=9, 22 = 3% 4 33,
at the point (1, — 1, 2).

5. Find the angle that the tangent line in the preceding question
makes with the axis of z.

6. Compute the length of the arc of the helix:
z = cos §, y =siné, bz=0,
when it has made one complete turn around the eylinder.
7. How steep is the helix in the preceding question ?
8. Show that the condition that the surfaces (3) cut orthogonally
is that

@3) oFoe  0F0®  OF0® _

oz T oydy om o
9. What is the condition that the three surfaces :

F(:t, Y, ')=01 ®(z, ¥, z)=0: \I’(m: v z)=0,
intersseting at the point (2, ¥, %), be tangent to one and the same
line there ?

10. The surfaces
?+yt+2=3 =1 2=z,
all go through the point (1,1,1). Find the angles at which they
infersect there.

11. Obtain the condition that the surface (1), § 1, and the curve
(1), § 2 meet at right angles.

12. Find the direction angles of the curve
p=tl, y=0 =
in the point (1, 1, 1).
13. Find the direction angles of the curve
. gyz =1, Pm=go
in the point (1, 1, 1).
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14. Find all the points in which the curve

v =1, y= 8, 2=
meets the surface
R=z42y-2

and show that, when it meets the surface, it is tangent to it.
15. Show that the surfaces

= 2 yv_2_
A2 =1, atua=h
in general never cut orthogonally ; but that, if
1.1 1

they cut orthogonally along their whole line of intersection.
16. When will the spheres
24P 4=1, E—a)2+@Y—0+(@z—c)t=1
cut orthogonally ?

17. Two space curves have their equations written in the form (6).
They intersect at a point P. Show that the angle ¢ between them at
P is given by the equation:

co8 ¢ = 2}l + yloh + 212k 2 =22, ete.
18. The ellipsoid : 2+3y24+222=9 and the sphere:

22 4 y? + 2% = 6 intersect in the point (2,1, 1). Find the angle be-
tween their tangent planes at this point.

19. Let a surface be given in the parametric form (9), § 1, and let
a curve in the (u, v)-plane also be given in parametric form:

u = x(t), v = w(t).
Show that, if x(t) and o(t) be substituted respectively for » and v in
the functions f(u,v), ¢(u,?), y(u,v), the new equations (9) repre-
sent a space curve.
20. Prove that all the space curves of the preceding question
which pass through a given point of the surface are perpendicular to
one and the same right line, and that the direction components of

this line are
oy, 2) 9(z, ) oz, v)
ou,v)) 0w v) ew,v)
respectively, formed for this point.
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21, If a surface is given in the parametrie form (9), §1, show that
the differential of arc of a curve on the surface is given by the
equation:

Al

d® = Edu? 4 2 Fdudy + Gdv?,

= [0\ | (O (D2
E_(au) +(3u> +(3u) ’
—dmox  Oyoy , 020z
F_3u30+3u3v+8u8v’

o= () )+

In the above equation for ds, what is the independent variable ?

where

5. Osculating Plane. Let P: (z,, ¥, %) be an arbitrary point of
a space curve, (1), § 2, and pass a plane

29) A(@—2)+ By — y)+ C(z — %)= 0
through P. Then the distance D of a neighboring point
P a=flt+h), y=¢l+h), z=y¢l+h)
of the curve from this plane will be in general an infinitesimal of
the first order with reference to PP’ as principal infinitesimal. For
+ D=AE =)+ Bl —y)+ O —%)
VAT B+
where z, ¥, z are the coordinates of P'. Hence
+ D ALf(to+ 1) — ft)1+ Blé(to + k) — (t))]+ ete.
VAL B+ C
Apply Taylor’s Theorem with the Remainder (Introduction to the
Calculus, p. 430) to each bracket :

2
S+ B~ 1) =y )+ 5 "+ 0, 0<o<1,
etc.,
and set V. A'+ B4 (*=A. We thus obtain the following expres

sion for D:
£ D =MAS 6+ B't)+ O¥ W)/
+ELAS 0+ )+ B4 + 01)+ OVt + 61}/

Hence limE D o AL )+ Be'(t) + Oy'(k)
var A A ?
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and this will not = 0 if 4, B, C are chosen at random, since f/(&),
&' (o) ¥/ (ty) cannot all vanish simultaneously, unless perchance at an
exceptional point. On the other hand, PP’ = As and h = At are in-
finitesimals of the same order, since

lim & = Ds = VI + $ ) + ¥ @ % 0.

Thus the above statement is proyen.
If, however, A4, B, and C are so chosen that

(25) Af'(b) + B¢'(ta) +CY¥'(t) =0,
then lim + D/h = 0 and

lim 2 D _ AF"(t) + BY"(t) + Oy’ (t).

pap h? 24A
Now (25) is precisely the condition that the tangent line to (1), § 2,
be perpendicular to the normal to the plane (24), and hence the tan-
gent will lie in this plane; i.e. the plane (24) is here tangent to the
curve, and D becomes now in general an infinitesimal of the second
order. But if 4, B, and C are furthermore subject to the restriction
that
(26) Af'(t) + Be"(t)) +Cy" (k) =0,
then even lim + D/h? =0 and D becomes an infinitesimal of still
higher order ; — of the third order, as is readily shown, if

AS"(t) + B¢ (to) +Cy""' () # 0.

Equations (25) and (26) serve in general to define the ratios of the
coefficients A, B, C' uniquely. The latter may, therefore, be elimi-
nated from (24), (25), and (26), and thus we obtain the equation of
the osculating plane :

T—T Y—Y ¥—%
@7 Lt) ¢(t) V) [=0. .
Si(t) ¢"(k) ¥'(t)

The osculating plane as thus defined is a tangent plane having
contact of higher order than one of the tangent planes taken at ran-
dom. There is in general only one osculating plane at a given point.
But in the case of a straight line all tangent planes osculate. Again,
if " (ty) = ¢" (tp) = ¢"'(t,) = 0, the same is true. And, generally, all
tangent planes osculate whenever all the two-rowed determinants
formed from the elements of the last two rows of (27) vanish. The
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osculating plane cuts the curve in general at the point of tangensy;
for the numerator of the expression for + D changes sign when lt
passes through the value 0.

It is easy to make a simple model that will show the oscula.tmg
plane approximately. Wind a piece of soft iron wire round a broom
handle, thus making a helix, and then cut out an inch of the wire
and lay it down on a table. The piece will look almost like a plane
curve in the plane of the table, and the latter will be approximately
the osculating plane.

A second experiment that can be made with the first model de.
scribed — I mean, the longer wire —is, to hold it up and sight along
the tangent at an arbitrary point P, thus projecting the wire on the
wall. The projection will be seen to have a cusp at the point which
corresponds to P, —and this, no matter what point P be chosen.

The normal line to a space curve, drawn in the osculating plane,
is called the principal normal. The centre of curvature lies on this
line, the radius of curvature being obtained by projecting the curve
orthogonally on the osculating plane and taking the radius of curva-
tare of this projection. The line through P perpendicular to both
the tangent and the principal normal is called the bi-normal.

If a body move under the action of any forces, the vector accelera-
tion of its centre of gravity always lies in the osculating plane of the
path.

When the equation of the curve is given in the form (2), § 2, the
equation (27) becomes:

“"3’(@@ )@= +(53) 0= ~(Z4) ¢~ =0.

EXERCISES

1. Find the equation of the osculating plane of the curve (5), § 2,
at the point ¢ = .

2. Find the equation of the osculating plane of the curve of inter-
section of the cylinders:

2y =0ad 28 4 2t =l

and interpret the result. )

Suggestion. Express @, y, 2 in terms of ¢, as for example :

& o= 0, 008 ¢, y=sasint, g=asint.
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8. Show that the oentre of curvature of a helix lies on the radius
of the cylinder produced.

4. Show that the osculating plane of the curve
Y = z%, B2=1—y
at the point (0, 0, 1) has contact of higher order than the second.

5. Prove that, in the case of a plane curve, the osculating plane
is the plane of the curve.

8. Show that, if the tangent to a space carve at a given point P
be taken as the axis of x, the principal normal as the axis of y, and
the bi-normal as the axis of z, equation (27) reduces to z =0.

7. Work out the equation of the osculating plane when the curve
is given by equations (3), § 2.

8. Prove that, if the osculating plane to a space curve is parallel
at every point to a fixed plane, the curve is a plane curve.

9. Show that, if all the tangent planes to a curve at an arbitrary
point osculate, i.e. if, no matter where the point P be taken on the
curve, every tangent plane at P has contact of higher order than is
in general the case, then the curve is a straight line,

6. Confocal Quadrics and Orthogonal S8ystems.* Consider the fam-

ily of surfaces:

¥ z
@ a2+A+b2+A+c2+A L a>b>e>0,
where ) i8 a parameter taking on different values. Fach surface of
the family is symmetric with regard to each of the coordinate planes.
‘We may, therefore, confine ourselves to the first octant.

If A > — c? we have an ellipsoid, which for large positive values
of A resembles a huge sphere. As A decreases, the surface contracts,
and as A approaches — ¢?, the ellipsoid, whose equation can be
thrown into the form:

2 ¥
v R —_——— e —
z _(0’+)‘)(1 a4 A b’+x)’

flattens down toward the plane z = 0 as its limit, —more precisely,
toward the surface of the ellipse
2
s tEta=t

.

* Ot Analytic Geometry, p. 590.

z=0,
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In so doing, it sweeps out the whole first octant just unce, as we

shall presently show analytically.
Let A continue to decrease. We then get the family:
) 2 L ¥ 1, —B<pc—e

d+p BPtp —(P+p)
These are hyperboloide of one nappe, opening out on the axis of z,
and they rise from coincidence with the plane z = 0 for values of u
just under — ¢, sweep out the whole octant, and flatten out again
toward the plane y = 0 as their limit when u approaches — b2
Finally, let A trace out the interval from — b2 to — a2 We then
get the hyperboloids of two nappes, cutting the axis of =:
z° y? 2? -
(3) a’-}-v —(b2+v) o Gl 7 1
These start from coincidence with the plane y =0 when » is near
— b, sweep out the octant, and approach the plane z==0 as »
approaches — a2
TarorEM 1.  Through each point of the first octant passes one sur-
Jace of each family, and only one.
Let P: (z, y, 2), be an arbitrary point of this octant. Then = > 0,
y>0, 2>0. Hold w, y, z fast and consider the funection of A:

—ad<v<— b

A ¥
S = a’+).+b’+lt+c2+)t
The function is continuous except when A=—¢?, —3%, or —at

In the interval — c® < A < 4o we have¥*
J(+x)y=-—1, lim f(A)=4 .
Ade—thi
Hence the curve
v=7r(})
erosses the axis of abscissas a¢ least once in this mterval
On the other hand
r=—t o

@+ T+ @A
Henoe f(A) always increases as A decreases, and so the curve cuts the
axis only once in this interval. We see, therefore, that one and only
ons ellipsoid passes through the point P.

< 0.

# By the notation %F{z) is meant the limit when @ approaches 4 from
above, Similarly, -HE_F(z)mamtheumltwhenznppmmhaatmm below.
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Similar reasoning applied to the intervals (— 3, —¢?) and
(—a? — %) shows that one and only one hyperbola of one nappe,
and one and only one hyperbola of two nappes pass through P.

Tuxorem 2. The three quadrics through P intersect at right angles
there.

The condition that two surfaces intersect at right angles is given
by (23), §4, Ex. 8. Applying this theorem to the surfaces (1) and
(2), we wish to show that ,

2z 22 2y 2y 2z 2z
a4+ At 4p B24AD 4+ A+
Now subtract equation (2) from equation (1):
22 y2 ,2
—2A + + =0,

e~ ErrETs  FTeTA  EIRE A
Since p — A = 0, this proves the theorem.

The three systems of surfaces that we have here investigated are
analogous to the three families of planes in Cartesian coordinates, to

the spheres, planes, and cones in spherical polar coordinates, and to
the planes, cylinders, and planes in cylindrical polar coordinates.

. 'They form what is called an orthogonal system of surfaces, and enable

us to assign to the points of the first octant the coordinates (A, u, v),
where .

-d<A<+®, —P<lpl - —ad<r<-B

EXERCISES

1. Let A=f(2,9,2), pr=90@ 2, v=¥( 9 %)
be the equations of three orthogonal families; the functions f, ¢, ¢
having continuous first partial derivatives, and their Jacobian not
vanishing. Show that
Mou du  NOu_ g
dwxox Oyody o0z0z
with two further equations obtained by advancing the letters A, g, »
cyclically.
2. Show that
tm0s, dyly B2de_g
ONBu OAOu DA O
with two further similar relations.
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8. Let a curve be drawn through a point of the region, and let its
equations be
z=g(t), y=A(t), 2= k()
where g, &, k have continuous first derivatives, not all zero. Then

—=Hﬁ*+mihuzw,

dg
where a ,
| oyt

B = aAE T o\t Br A’

w W, o
H,= + Bu + = a2’

=02 oy o

B = aﬁ'+ow Pxy

It is in this sense that the equation
det = H,d\* + Hydp? + Hydv®
i4 to be understood.

4. By making use of the theorem for the multiplication of deter
minants in the form given in Chap. XII, § 2, Ex. 5, show that

S=HHH, where J=2&®H2,

. oA 1y v)
8. Prove the relations:

oA oz 3,.4, oz Oy _0x,

H‘a an’ a ? H’az: o'’

o\ _ oy P AL ?!=3 .
m@‘m’ @ e ma v’
n_o e % o a

18z ax’ 22z ou’ Y3 oy

Suggestion: Start with the equations
OzoN L Oxop 01y _
PRI P T
oyt o o,
A0z Opdz Ovox

030\  Oz0u  Ozidv

34\3:v+ap.3:z+3vaz

multiply them respectively by 9z/2x, Oy/ex, dg/2A, and add,
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8. Show that
1 1 1
Alh Hl, A!f" -E Alv--H—',
where A; denotes the first differential operator,

s+ ) + (&)

7. Prove that, if u be any function of z, y, 2, continuous together
with its first partial derivatives, then

ot o oo 100, 100, 1 b
or® 33/2 02° H1 a)‘z Hz a’l- .Ha 3v2 ’

or Axu = A] (au) + A1 (gu> -+ A;v (g‘:)

7. Curves on the Sphere, Cylinder, and Cone. In order to study
the properties of curves drawn on the surface of a sphere, we intro-
duce as coordinates of the points of the surface the longitude § and
the latitude ¢. Any curve can then be represented by the equation
&y F(8, $)=0.

To determine the angle o between this curve and a parallel of
latitude, draw the meridians and the parallels of latitude through
an arbitrary point P: (6,, ¢) and a neighboring point P : (6, + A4,
¢ + Ag) of this curve. We thus obtain a small curvilinear rectangle,
of which the arc PP’ is the diagonal. We wish to determine the

angle o= Z MPP'

Now consider, beside the curvilinear right
triangle MPP’, a rectilinear right triangle
whose hypotenuse is the chord PP and -
one of whose legs is the perpendicular
PM, let fall from P on the meridian plane
through P'. The angle

. o =< MPP

of this triangle evidently approaches » as
its limit when P approaches P. We have:

M P
1

tan o' =——-
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It is olear that PM, differs from PM = a cos ¢ A9 by an infinitesi-
mal of higher order, and likewise M; P' differs from MP =q A¢d by
an infinitesimal of higher order. Hence, by the theorem of the
Introduction to the Calculus, p. 90, which says that the limit of the
ratio of two infinitesimals is unchanged if either or both the infini-
tesimals be replaced by others which are equivalent respectively to
these, we obtain:

lim tan o' = lim 208 _jim —"’—A-‘#—-,
Pap rep PM;  aec0acO8 ¢y A
1
tan w = cos %Do ¢,
or, dropping the subseript:
@ - tanw= %9,
cos ¢ df

In order to obtain the differential of the arc of the curve (1) we
write down the Pythagorean Theorem for the triangle PM,P':

PP” = m + M, P%
divide through by A#? and then let Af approach 0 as its limit, Since
the chord PP' differs from the arc As by an infinitesimal of higher
order, we have:

. (PP'\* .. [As\? . (AN
1 —_— = —} = aZcos? 2] =z
m (5 ) = im (5 = aoost o + e Jim (897,

(Dys)? = a2 cos® ¢ + 0 (Dy )%,

3) ds? = a?[cos? ¢ d6? + dep?].
Rhumbd lines, A rhumb line or loxodrome is the path of a ship that
sails without altering her course, 1.e. a curve that cuts the meridians
always at one and the same angle. If we denote the complement of

this angle by w, then we have from (2) for the determination of the
ourve :

s = d#@ tan w.
cos ¢
= {89 . .7\, 0
()] ftan o fcos¢ logtan<2+4)+0

This is the equation of an equiangular spiral on the sphere, which
winds round each of the poles‘an infinite number of times.
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EXERCISES

1. Show that the total length of a rhumb line on the sphere is
finite.

2. The Cartesian coordinates of a point on the surface of a sphere
are given by the equations:

2 ==a cos ¢ cos é, ¥ =a cos ¢ 8in §, z=asin¢.
Deduce (3) from these relations and the equation:
ds? = da? + dy? + d22.

3. Taking as the coordinates of a point on the surface of a cone
(p, 8), where p is the distance from the vertex and @ is the longitude,
show that
®) tanw=—__.

pdf sin e
4. Obtain the equation and the length of a rhumb line on the cone.

5. The preceding two questions for a cylinder.
Ans. tan w = g;—a, ds? = a?df® 4 dz22, where r=a
is the equation of the cylinder in cylindrical coordinates.

8. Mercator's Chart. In mapping the earth on a sheet of paper it
is not possible to preserve the shapes of the countries and the islands,
the lakes and the peninsulas represented. Some distortion is in-
evitable, and the problem of cartography is to render its disturbing
effect as slight as possible, This demand will be met satisfactorily
if we can make the angle at which two curves intersect on the earth’s
surface go over into the same angle on the map. For then a small
triangle on the surface of the earth, made by arcs of great circles,
will appear in the map as a small curvilinear triangle having the
same angles and almost straight sides, and so it will look very simi-
lar to the original triangle. What is true of triangles is true of
other small figures, and thus we should get a map in which Cuba
will look like Cuba and Iceland like Iceland, though the scale for
Cuba and the scale for Iceland may be quite different.

A map meeting the above requirement may be made as follows.
Regarding the earth as a perfect sphere, construct a cylinder tan-
gent to the earth along the equator. Then the meridians shall go
over into the elements of the cylinder and the parallels of latitude
into its cireular cross-sections as follows: Let P be an arbitrary
point on the earth, @, its image on the cylinder.
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(a) Q shall have the same longitude, 6, as P

(3) To the latitude ¢ of P shall correspond a distance & of Q
from the equator such that the angle » which an arbitrary curve C
through P mnkes with the parallel of latitude through P, and the
angle w; which the image C; of C' makes with the circular section
of the cylinder through @, shall be the same. Now from (2)

9 tan w = 9%
dfcos ¢
On the other hand, by § 7, Ex. 5,
tan o; =;%-
Hence we get
d$p _ dz add
ddoosg add de = cos ¢’

= aé 4
z_afcosqs_alogmn( + = )

the constant of integration vanishing because z =0 corresponds to
¢ =0. Thus, if a =1, a point in latitude 60° N. goes over into a
point distant 1.32 units from the equator.

The cylinder can now be cut along an element, rolled out on a
plane, and the map so obtained reduced to the desired scale.

This map is known as Mercator’s Chart.* It has the property
that the meridians and the parallels of latitude go over into two
orthogonal families of parallel straight lines. Furthermore, a
rhumb line on the earth is represented by a straight line on the
map. Hence, in order to determine the course of a ship which is
to sail from one point to another without altering her course, it is
only necessary to lay down a straightedge on the map so that it
will go through the two points, and read off the angle it makes with
the parallels of latitude.

We call attention to the fact that the above map cannot be ob-
tained by projecting the points of the sphere on the cylinder along
a bundle of rays from the centre. It is true that the meridians
would go over into a family of parallel straight lines as before, and
the same is true of the parallels of latitude, but angles would not in
geueral be preserved.

* (3. Kremer, the Latinized form of whose name was Merecator, completed a
map of the world on the plan hers set forth in 1568.
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EXERCISES

1. Turn to an atlas and test the Mercator’s charts there found
by actual measurement and computation.

2. Show that a curve on the sphere, which cuty the forty-fifth
parallel of latitude af an angle of 45°, goes over by the central pro-
jection mentioned above into a curve which cuts the image of that
parallel of latitude at an angle of 54°44’.



CHAPTER VII

TAYLOR'S THEOREM, MAXIMA AND MININMA.
LAGRANGE'S MULTIPLIERS

1. The Law of the Mean. Let f(z,y) be a continuous function
of the two independent variables = and y, having continuous first
partial derivatives throughout a region 8. Let (y,%,) be any point
within 8, and let h, k be two arbitrary constants, Consider

(@ + R, v+ k).
We have obtained an expression for this value in terms of f(x, )
and the first partial derivatives of f(z,y); cf. Chap. V, §7. The
method consisted in forming the function

&(t) = f{wy + th, yo + tk), 0=st=1
®(1) =1 (2 + b % + k), ®(0) = S (=0, %o,
and the Law of the Mean for functions of a single variable, applied

to ®(¢), gave:
&(1) = &(0) + 1 - &'(6), 0<b<l.

Henoe the desired formula resulted, namely:
f(%+h, Z/o+7ﬂ)=
f(%; %) + hfi(m + Ok, yo + k) + kK fo(zy + Oh, Yo + 0K),
where 0 < § << 1. This is the Law of the Mean for functions of
two independent variables. It has been tacitly assumed that the
restrietions on the function hold at least throughout the region
@ =Ty 4+ th, y =y + 8k, 0=st=g1, 0ss1,

# and ¢ being independent of each other.
The extension to functions of n > 2 variables is obvious.

2. Taylor's Theorem. We obtain Taylor's Theorem with the Re-
mainder for functions of several variables if we write the corre-
sponding theorem for &(f), Introduction to the Calculus, p. 430:

= e g Lamgyp 1 gom
o1)= 2(0)+ &'(0)+ +M'I> (0)+(n T 1)!Q ),
and then substitute for @ and its derivatives their values, Thus
when 2= 1 we get

For,

172
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M S+ hy o+ B =1 (%, Yo)+ 2Sfi(@ps Yo) + kS2(@s; Yo)
+ 3[R fu(X, V) + 2Rk fiu( X, Y)+ Bf(X, T)],

where X==xg+6h, Y=y +0k and 0<6<1l
The student should write out the formula for the next case, n=2,
The general term, @"(0)/n!, can be expressed symbolically as

1], d a7
R I YAy A
n![ é?a:+ 6y] 7@y
and the remainder as
1 0 g it
S [ S
ot 1)![ 2+ ay] £ 9)

The extension to functions of n > 2 variables is immediate.

If the remainder converges toward zero when n becomes infinite,
we obtain an infinite series whose terms are homogeneous polyno-
mials and which converges toward the value of the funection. If,
furthermore, the series whose terms consist of the monomials that
make up the terms of the latter series converges for all values of k
and k within certain limits: |k|< H, |k|< K, we say that the
function can be developed into a power series in h=x—2 and
k=y—1%:

&) S (@) =3 (@ — 7)™y — o)

or that it can be developed by Taylor's Theorem. A series of the form
(2) is often called a Taylor’s Series. But it is not in general feasible
to give a direct proof that the remainder converges toward zero, and
so other methods of analysis have to be employed to establish a
Taylor’s development.

=gy
¥=¥o

2=+ B
=i+ bk

EXERCISE

Assuming that the function e*cosy can be developed by Taylor’s
Theorem about the point @, =y, =0, show that

ercosy=1+a+ 3@ —y)+ -

8. Maxima and Minima. The function f(z,y) will bave a
maximum at the point (,, ¥,) if the tangent plane of the surface

u=f(z,9)
at (%o, %) is parallel to the (z,y)-plane and the surface lies below this

plane at all other points of the neighborhood of (%o, ¥, #). Hence
we ree that at (29, ¥o)
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A similar statement holds for a minimum.*

The necessary condition contained in (1) can be extended at onoe
to functions of n > 2 variables. For, if any one of the first partial
derivatives, as du/oz, for example, were 0 at (%, Yo, %, *-*), then
the function f(z, v, %, ---), Which is a function of @ alone, would
be increasing as x passes through the value ay, or else it would be
deoreasing, according to the sign of du/dx, and so in neither case
could f(z, v, 2, ---) have a maximum or a minimum there.

The conditions (1) are frequently sufficient, together with other
information, to determine a maximum or a minimum.

Example 1. Given three particles of masses m;, maq, ms, situated
at the points (2, 1), (%2,%), (%, ¥:). To find the point about which
the moment of inertia of these particles will be a minimum.

Here it is clear that for all distant points of the plane the mo-
ment of inertia is large, becoming infinite in the infinite region of
the plane. TFurthermore, the moment of inertia, I, is a positive
ocontinuous function. Hence the surface u = 1, or

u=m[(z —2)? + (¥ — ¥)'] + ma[(@ — &)’ + (¥ — 1)*]
(e = )+ (3~ Y]

must have at least one minimum, and at such a point

g-l;==2[m,(z—a:1)+m(¢—%)+ma(-"’—%)]=0{

?—g=2cmx(y—yo+m<y—y=>+m.<y—y,)1=0-

But these equations determine the centre of gravity of the particles

and are satisfied by no other point. Hence the centre of gravity is
the point about which the moment of inertia is least.

" The result is in accordance with the general theorem of the Jaéro-

duction to the Calculus, p. 331, and it holds for any system of parti-

ales whatever.

* A point (2o, ¥s) 8t which equations (1) alone are satisfied — apart from
any further condition —may be called a point at which the function is station-
ary, since the change in value which the function experiences when (z,¥)
moves to a point (Z4 4+ Ry % + k) near by ia an infinitesimal of higher order
than the distance between these pointa,
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Auziliary Variables. Asin the case of functions of a single varia-
ble, so here it frequently happens that it is best to express the
quantity to be made a maximum or a minimum in terms of more
variables than are necessary, one or more relations existing between
these variables. The student must, therefore, in all cases begin by
considering how many independent variables there are, and then write
down all the relations between the letters that enter; and he must
make up his mind as to what letters he will take as independent
variables before he begins to differentiate.

Ezample 2. What is the volume of the greatest rectangular paral-
lelepiped that can be inscribed in the ellipsoid :
T AT
@ atuta=1’
We assume that the faces are to be parallel to the coordinate
planes and thus obtain for the volume:
V =8uayz.
But z, y, # cannot all be chosen at pleasure. They are connected by

the relation (2). So the number of independent variables is here
two, and we may take them as # and y. We have, then:

v o2\ _ v __ o2\
3) -a-(;=8y<z+:cam)_0, ay_Sx(z+yay> 0.
From (2) we obtain:
n__dz % %y,
@) ox az’ oy b2z

Now, neither = = 0 nor y = 0 can lead to a solution of the problem,
and hence it follows from (3) and (4) that

or L=t =

Thus the parallelepiped whose vertices lie at the intersections
of these lines with the ellipsoid, i.e. on the djagonals of the cir-
cumscribed parallelepiped z=+a, y=+b, 2==c¢c, is the one
required,* and its volume is
V=4§V3abc.
* The reasoning, given at length, is as follows. ¥ is a continuous positive

function of £ and y at all points within the ellipse

2 '

— 4 = 11

ar
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EXERCISES

1. Required the parallelepiped of given volume and minimum
surface. Ans. A cube,

2. Required the parallelepiped of given surface and maximum
volume, Ans. A cube.

8. A tank in the form of a rectangular parallelepiped, open at the
top, i8 to be built, and it is to hold a given amount of water. Find
what proportions it should bave, in order that the cost of lining it
may be as small as possible. How many independent variables are
there in this problem ?

Ans. Length and breadth each double the depth.

4. Find the shortest distance between the lines

y=2z, y=3z+4+7
z=Jux, ?=u=z.

5. Show without using the calculus that the function

P24y +4e-32y -7
has a minimum,
Suggestion, Use polar coordinates.

8. Find the minimum in the preceding problem.

7. A hufktred tenement houses of given cubical content are to
be built in a factory town. They are to have a rectangular ground
plan and a gable roof. Find the dimensions for which the area of
walls and roof will be least.*

8. A torpedo in the form of a cylinder with equal conical ends
is to be made out of boiler plates and is just to float when loaded.
The displacement of the torpedo being given, what must be its pro-
portions, that it may carry the greatest weight of dynamite?

Ans. The length of the torpedo must be three times the length
of the cylindrical portion, and the diameter must be /5 times the
length of the cylindrical portion.

for which 2 > 0, y >> 0, and it vanishes on the boundary of this region. Hence
it must have at least one maximum inside. But we find only one point, namely
z=@a/Vv8, y="b/V3, atwhich ¥ can posaibly be at & maximum. Hence, etc.

% The problem is identical with shat ur finding the best shape for a wall-
tent.
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9, Find the point so situated that the sum of its distances from
the three vertices of an acute-angled triangle is a minimum.
Ans. The lines joining the point with the vertices make angles
of 120° with one another.*
10. Find the most economical dimensions for a powder house of
given cubical content, if it is built in the form of a ¢ylinder and the
roof is a cone.

4. Test by the Derivatives of the Second Order. We proceed to
deduce a sufficient condition for a relative maximum or minimum
in terms of the derivatives of the second order. Suppose the neces-
sary conditions, § 3, (1) are fulfilled at (xy, %,). Then from § 2, (1)
we get:

(1) f(‘”o'?'h; y0+k)—f($01 y0)==3—(Ah2+2Bhk+ Ckz):
where A =fiu(@ + Ok, yo + 6K), B = fis(zy+ 6h,.yo + 6F),
O = fna(@ + Ok, yo + 6K),

and for a minimum the difference (1) must be positive for all points
2= + h, y =y + k near (x,, y,) except for this one point, where
it vanishes.

Definite Quadratic Forms. A homogeneous polynomial of the sece-
ond degree in any number of variables is called a guadratic form.t
and is said to be definite if it vanishes only when all the variables
vanish; otherwise it is said to be indefinite. Thus

k2 4+ k2, 243K+ 502
are examples of definite quadratic forms in two and three variables
respectively ;
h?, 3R+ Thk+2kE=Bh+k)(h +2F)
are indefinite. A definite quadratic form never changes sign; an
wmdefinite one may.
TreoreM. In order that
U= Aht +2 Bhk + Ck?,

# For a complete discussion of the problem for any triangle see Goursat-
Hedrick, Mathematical Analysis, vol. 1, § 82.

1 For some purposes it is desirable to define an algebraic form merely as a
polynomial. But we are concerned here only with homogeneous polynomials.
Moreover, we exclude the case that all the coefficients vanish.



178 . ! CALCULUS

where A, B, C are independent of b and %, be a definile form, & 4
necessary and suficient that
@) B—-AC<O.

That this condition is sufficient is at once evident. For, if it is
fulfilled, surely neither .4 nor C can vanish, and we can write:

U= %1. [(Ah + BE)? + (AC — Bo)k?).

Hence U can vanish only when
A+ Bt=0 and k=0,

te. only when A=k =0, q.e.d.

We leave the proof that the condition is necessary to the student.

When the condition (2) is fulfilled, 4 and C necessarily have the
same sign, and this is the sign of U.

CororLrany. If A, B, C depend on h and k in any manner what-
ever, and if, for a pair of values (k, k) not both zero, the condition (2)
is fulfilled, then for these values U has the same sign as A and C.

Application to Maxima and Minima. Returning now to equations
(1), let us suppose that

ofu \2 2udlu
@) ty) "oy

at (zq, ¥o) and that these derivatives are continuous in the vicinity
of this point. Then the relation (3) will hold for all points near
(g, ¥o) and furthermore, for such points, both %23 and %:i will
preserve the -common sign they have at (z,, ;). Hence the right-
hand side of (1) will vanish only at (%, %), and at other points in
the neighborhood will have the sign of these latter derivatives.

We are thus led to the following

Surricienr CoNpITION FOR A RELATIVE MaxiMuM or MINX-
muM. If at the point (2o, o)

du ou__n.
(a) 55“ 0, 5—3;== H

Bu\t Pudlu .,
® (se23) 3ot 39 <

and if the derivatives of the second order are continuous near (%, ¥)
then u will have o relative mazimum at (ay, ¥o)
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&

(o) <0
and a relative mintmum there i
n

(c2) 551: >0,

Conditions (b) and (c) are not necessary, but only sufficient.  may
bave & maximum or a minimum even when the sign of inequality in
(b) is replaced by the sign of equality. But if, in (), the sign of in-
equality be reversed, u has neither a maximum nor a minimum.

When f depends on n > 2 variables, the method of procedure is
gimilar. First, the algebraic theorem about quadratic forms has to
be generalized. Thus for three variables,

(A) U=an2l + aus} + a2} + 2 a5y 20 + 2 05237 + 2 032,24

and a necessary and sufficient condition that U be a positive definite
quadratic form is that

an a Ay Gyp Qg
1 G2
1) ay >0, >0, ay G a1 > 0,
agy Gge
O3 QGgg Ggs

where a,; =a,,. This form of statement suggests the generalization

for n =n.
If Uis to be a negative definite quadratic form, the first, third,
fifth, ete. inequality signs in (5) must be reversed.

EXERCISES
1. Show that the surface
2=y
has neither a maximum nor & minimum at the origin.
2. Show that the function
P+ 32— 2ay+ byt — 4y
has a relative minimum at the origin.
8. Test the function
220422y + 6y +22—-2y41
for maxima and minima.
4. Determine the maxima and minima of the surfacs
2429+ 82— 20y —2yz = 2.
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5. Lagrange's Multipliers. Let it be required to find the con-
dition that the function

(1) ' v=F(z,y,2)
may be stationary, where z, y, 2 are connected by a relation
@ (2, y, 2)=0.

The condition is represented by equations (1) of §3, extended to
this more general case,

If equation (2) can be solved for z, then, on substituting this value
for 2z in (1), we bave u expressed as a function of the two inde-
pendent variables z and y, and hence equations (1) of §3 become

du 0z ou _ oz _
3 5;=F1+Faa—m-—0, 'é!-/—-Fz'i'Esay— .

On the other hand, we have for the determination of 9z/2x and
8z/8y from (2) the equations
oz _
o

From the pair of equations consisting of the first equation in
(3) and (4) 9z/0x can be eliminated:

F, F

5 =0;
®) o o=

0z

(4) ‘b‘_ + ¢’ 0, Qg + d’g a’; - 0.

and similarly, from the pair consisting of the second equation,
03/8y can be eliminated :
F, F

(6) o o

Equations (5) and (6), combined with (2), are three equations for
determining the values of the three unknowns =z, y, and 2, for which
equations (3) and (4) hold simultaneously, and hence for which
equations (1) of § 3 are true.

Lagrange observed that the problem just solved is equivalent to
the following problem. Let u be set equal to the function F' + Ad:

(" u=F(z, y,2) + A®(z, ¥, 2),
where A is a constant, to which we will later assign a suitable value.

Consider » as a function now of the three independent variables, z,
¥, and 2,* and write down the conditions corresponding to (1) of

=0.

* This step is wholly arbitrary. The motif lies in the purely algebraic sita-
ation which arises when we do this thing.
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§ 3 for this function ; thus we have
(8) F1+A¢1=O, .Z”z"-l\.@g:o, E+1\¢3=0.

If these equations are to hold simultaneously, then it follows from
the third of them that A must have the value:

F
9 A= — 3.
® o
Hence, on substituting this value of A in each of the first two of the
equations (8) we are led to equations (5) and (6).

Thus we obtain by Lagrange’s method these two pivotal equations,
and no mare; for equation (9) imposes no condition on =, , z, but
serves merely to determine A. Coming back, now, to the original
problem of making u as given by (1) under the restriction (2) a max-
imum or a minimum, we add to the two equations just mentioned
equation (2), and thus have the same system of three equations
which we obtained by the first method.

The method can be extended at once to the case of a function u
of n variables, z,, .-, ,, which are connected by a single relation:
10) u= F(x,, -+, 2,), &>y, ooy 2)=0.

The last equation can equally well be written in the form

d’(ml) ey XY= C,
where C is any constant. — Cf. further § 6. .
Ezample. (See also p. 526.) Let
F(z,y,2)= A2+ By’ + C2+2Dyz+ 2 Ezx + 2 Fay

be a positive definite quadratic form, and let =, y, 2 be restricted
by the relation
Sy, )=+ Y+ FP=a
Equations (8) now take on the form
Az 4+ Fy 4+ Ez 4+ Az =0,
1) Fr 4 By+ Dz+ My =0,
Ex4+Dy+ Cz+ Az =0.
A necessary condition that these equations hold simultaneously
is that
4A+2x F E
12) F B4+x D |=0
E D C+4+
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If, in particular,
{13) F(z, y, 3) = Az + Byt + 02,
the equation (12) reduces to
(4 +M)(B+1)(C+r=0,
and the roots, which are all real, are — 4, — B, and — C.

In the general case, equation (12) has at least one real root, and
no root of (12) is 0. For, the vanishing of the determinant arising
by setting A =0 in (12) would mean that F(z, ¥, ?) could vanish for
values of z, y, z not all 0.

Consider the function F(z,y,2) in the points of the sphere
®=a® Since F(z,y,2) is continuous, it has a maximum value on
the sphere, and also a minimum value.* Hence two of the three
roots of (12) are real and distinct, and thus all three are real.

Let the coordinate axes be 8o rotated that F attains its maximum
value in the point (0, 0, {), where { > 0. From (11) it appears that
D=0, E=0, A=—C. Thus

F(z, y,%) = A2* + 2 Fay + By + 02, o>o.

If F % 0, a suitable rotation of the axes about the axis of z will
remove the term in 2y, and thus the form (13) is attained, where A,
B, C are all positive.

EXERCISES
1. Find the values of (z, , z) for which the function
U = Yz
is stationary, if z4+y+z=1

2. Work Example 2 of § 3 by means of Lagrange’s multipliers.

3. Examine the Exercises at the close of §3 and determine to
which of these the method of Lagrange’s multipliers is particularly
well adapted.

4. 8how that the method of Lagrange’s multipliers is valid in the
case of functions of a single variable, given in the form:

u=F(z, ) &(z, y)= 0.
&I, in particular, these values are the sams, i.e. if F(z, ¢, z) is constant on

the sphere, then F(z,y,2) = K&(z,y,2) (K = const.) and all three roota of
(13) are real and equal.
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The condition here takes on the form:
F F,

®, ¢,‘=o'

5. Bhow that, if
u=F(z,, -, a:,,)=2a,,,a:,x, and @ (zy, +v, )= 2] 40 2 =@

where ¢ and j, independently of each other, run through the values
from 1 to n, and a,; = a,, equations (8) assume the form

au + - + a2, + A2, =0,
(14) au® + -+ + g%, + A2 =0,
Qi &y + oo+ B, T, + AT, = 6

Hence A must be a root of the equation

Gu+A @ . . . . @M,
(15) (2] Qo + AL Qg = O-
a'd_ Quo v+« Quy + A

8. Show that if, in the preceding question, the function u has a
maximum or 2 minimum in the point (0, 0, .-, 0, z.), where z. > 0,
then F contains only a simple term involving «,, namely q_a3.

7. A “rotation” of space of m dimensions is given by the formula

Ty = Ay + o0 4 G, k=1, m,
"
where E;ab,u,,={(l)' ’;f;’ and @, = ay,
I= T

provided the determinant of the transformation (which = 3 1) has
the value + 1.

Show that, by a succession of rotations (which can, of course, be
compounded into & single rotation) the form F of Question 5 can be
carried into a form in which only the terms in z} are present.

8. Find the points of the circle
Ryt al=1 ax+by4c2=0,
in which the function
w=Az*+ By + 022 +2Dyz + 2 K2z + 2 Fzy
attains its greatest and its least values. Treat first the case:
D=E=F=0.
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8. Continustion. Beveral Auxiliary BEquations. The' method of
Lagrange’s multipliers applies to the general case that the variables
are connected by an arbitrary number of auxiliary equations. For
example, let
® u=F(z,y,21),

(2) (2,9, % )=0, ¥(@, y, 2, t)=0.

If equations (2) can be solved for z and ¢, then, on substituting
these values in (1), » becomes a function of = and y. Equations (1)
of § 3 now take on the form

oz ot oz ot
3 — _—= —_— —= U
3 F1+Fsam+F4am 0, F2+Faay+F4ay 0
The derivatives dz/0x, etc. are determined by the equations :
2 ot
@ ‘I’l+‘l’sé—:+4’4%=0» ‘1’2+1’33 +‘l’ng; 0;
oz ot
® ‘['1+‘l’sa'?c+‘l’4a—m=0: ‘1'2+“’sa +‘I’4§t

Thus we find the conditions

F, Fy F, F, Fy F,
(6) Ql @a d" = 0, @2 ‘bs ¢4 = 0.
v ¥ ¥, Y, ¥ ¥,

The four equations (2) and (6) determine the four unknowns
2, ¥, % ¢, and for this system of values equations (1) of § 3 hold.

Lagrange’s method consists in forming the function

u=F4 Ad + p¥,

where A and x are constants, to which shall later be assigned suitable
values, and where % is considered as a function of the four indepen-
dent variables, (z, ¥, #, t). Itis to this function that condition (1) of
§ 3 is now applied, and thereby result the equations:

(7) F’1+A¢1+}L‘I’1=O, F2+A¢z+’$‘l’3=0, F;+A¢;+M‘I’x=0’
F|+AQ4+F,\I"==O.

From the last two of these A and u are to be determined, and these
values are then substituted in the first two. The two equations thus
obtained are precisely the equations (6).
" The extension of the method to a function of n variables,

v Pz, -y 3,),
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the variables being connected by p equations:
QO(zy, e, @ )=0, + - ., BO(zy, e, 2)=0,
is now obvious. The relations which correspond to (6) are:
F, Fopu- T

@) P @y P | 20, k=1, p
P B, - P

7. Conclusion; Critique. In the first case considered, § b, it was
tacitly assumed that the functions F(z, y, 2) and @ (z, y, 2) are con-
tinuous, together with their first partial derivatives, in the neighbor-
hood of a point (%y, %, %) whose coordinates satisfy equations (2),
(6), and (6). But this is not enough. The equation (2) must deter-
mine such a function z of 2 and y that equations (3) can have a meaning.
This will surely be the case if ®s(2g, ¥, %) 0. Moreover, this is
also precisely the condition which we need in Lagrange’s method, in
order that equation (9) may have a meaning. It is,"of course, im-
material whether we solve equation (2) for z or for one of the other
letters. We see, then, that Lagrange’s method will apply if at least
one of the numbers ®.(%, Yo, %), k=1, 2, 3, is different from 0.

In § 6 the situation is similar. It is enough,’in addition to the
continuity of the functions ¥, ®, ¥ (together with that of their first
partial derivatives) in the neighhorhood of a point whose coordinates
satisfy equations (2) and (6), that at least one of the two-rowed
determinants

®, @
v v

where ¢ and j are two distinet numbers chosen from the set 1, 2, 3,
be different from zero.

The extension to the general case is now obvious. At least one
p-rowed determinant from the matrix made up of the last p rows of
the determinant (8) must be different from zero; —at least, this is
sufficient, in order that u be stationary. The student must have a
firm hold on the theory of Linear Dependence ; cf. Bocher, Algebra,
Chaps. 3, 4.



CHAPTER VIII

ENVELOPES

1. Envelope of a Family of Curves. Consider a family of circles,
of equal radii, whose centres all lie on a right line. The family is
represented by the equation

® (z—a)t4y=1
where the parameter « runs through all values. The lines
@ y=1 and y=-1

are touched by all the curves of this family.

Again, let a rod slide with one end on the floor
and the other touching a vertical wall, the rod always
remaining in the same vertical plane. It is clear that
the rod in its successive positions is always tangent
to a certain curve. This curve, like the lines (2) in

Fia. 42 the preceding example, is called the envelope of the

family of curves.
Turning now to the general case, we see that the family of curves
3) S, y, a)=0

may have one or more curves to which, as « varies, the successive
members of the family are tangent. When this is so, two curves
of the family corresponding to values of « differing but slightly
from each other:

(4) J(@, ¥, ap)=0, S, ¥, g+ A)= 0,

will usually intersect near the points of contact of these curves with
the envelope, as is illustrated in the above examples. 8o if we
determine the limiting position of this point P of intersection of
the curves (4), we shall obtain a point of the envelope. We will
first outline the method and show its application, and then come
back to a study of the details in § 4.

From analytic geomsetry * we know that, if u=0 and v=0 are

& Anglytic Geometry, p. 165,
: 188
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r’
the equations of two curves, then « + kv = 0 (where k is a constant)
represents & curve which passes through all the points of interseo-
tion of the given curves. Applying this principle to the curves (4),
we see that a third curve through P is given by the equation

(5) J@, y, &+ Aa)— f(2, y, o) = 0.

The left-hand side has the value Aaf,(x,y, @ + 6Aax) (Law of
the Mean, Chap. V, § 2). Hence the coordinates of P satisfy the
equation
(6) Ja(z, ¥, g+ 6Aa)=0.

Now let Aa approach 0 as its limit. The point P approaches the
point of tangency of the first curve (4) with the envelope, and the
left-hand side of (6) approaches f.(, y, ;). Hence the equation

f;(ﬂ?, Y aﬂ)= 0

represents a second curve passing through the point of tangency of
the first curve (4) with the envelope. Thus we obtain the

TaroreM. The envelope of the family of curves

J(@y &)=0
i3 given by the pair of equations v

@ fayna=0  L=f@ya=0.

Ezample 1. Applying formulas (7) to the family of circles (1)

we get:
¢ ?I__z(z—a)=o.

Equations (7) now tell us that the envelope is given by the pair of
equations
(z—a)4y2=1, z—e=0.

These equations are equivalent to the single equation obtained by

eliminating a:
yr=1, or y=1 and y=-—1.

The analytic result is seen to correspond with the geometric evi-
dence.

Ezample 2. To find the envelope of the family of ellipses whose

axes coincide and whose areas are constant.
Here,
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(@) Z+l=1, -
(® rab="k.

It is more convenient to retain both parameters, rather than to
eliminate, but we must be careful to remember that only one is
independent. If we choose a as that one, a = a,

and differentiate with respect to a, we have:
_22 2440 aby_
T E_20D_,, -n-(b+a,da)_0,
K and hence
a2 2
Fia. 43 © pri %'

Between (a), (b), and (¢) we can eliminate @ and b and thus get a
single equation in # and y, which will be the equation of the en-
velope. To do this, solve (a) and (c) for a® and b2, thus getting
a?=2z?, =2y,
and then substitute the values of a and b from these equations in (3):
+ 27 Y = k,

This equation represents a pair of equal equilateral hyperbolas or
the axes as asymptotes. .

The equations ~
=1t a/V2, y=1+b/V2,

combined with (b), give the coordinates of the points of the en-
velope in which the particular ellipse corresponding to that pair of
values of a and b is tangent to it. This remark applies generally
whenever the coordinates z and y of a point of the envelope are
obtained as functions of a.

EXERCISES
1. Find the envelope of the family of straight lines
2ey =27+
Draw.a number of the lines.
2, 'i‘he same question for the family
zcose + ysina =2,
8. The legs of a right triangle lie along two fixed lines, and the
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hypotenuse varies so that the area of the triangle is always the
same. Find the envelope of the hypotenuse.

Draw an accurate figure showing a good number of the triangles.
Take 1 cm. as the unit of length and 2 8q. em. as the area of the
triangles,

4. Circles are drawn on the chords of a parabola which are per-
pendicular to the axis, as diameters. Show that the envelope is an
equal parabola.

Make an accurate drawing of a good number of circles for the
parabola y?==2, 1 cm. being taken as the unit of length.

5. Show that the envelope of all ellipses having coincident axes,
the distance between two comsecutive vertices of any ellipse being
the same for all the ellipses, is a square.

6. What is the envelope of all the chords of a eircle which are of
a given length ? '

7. Find the envelope of straight lines drawn perpendicular to
the normals of a parabola at the points where they cut the axis,

8. Find the envelope of a circle which is always tangent to the
axis of x and always has its centre on the parabola y = #2.

9. Show that the envelope of the lines in the second example of
§ 1 is an are of a four-cusped hypocycloid.

10. A straight line moves in such a way that the sum of its inter-
cepts on two rectangular axes is constant. Find its envelope. Draw
an accurate figure,

Observe that the equation V& 4+ vy = VI represents a parabola.

11. Find the envelope of the family of circles which pass through
the origin and have their centres on the hyperbola zy = 1.

Ans. The lemniscate (22 4 y2)? = 16 zy.

12. The streams of water in a fountain issue from the nozzle,
which is small, in all directions, but with the same velocity, w,.
Show that, if the nozzle be regarded as a point, the form of the
fountain is a paraboloid of revolntion.

13. Circles are drawn on those chords of an ellipse as diameter
which are parallel to an axis of the ellipse. Show that the envelope
is part of an ellipse, one axis of which is equal to the axis men-
tioned, the other axis being equal to the diagonal of the rectangle
which circumscribes the ellipse.

14. Circles are drawn on chords of the hyperbola zy = 1 as diam
eters. Find their envelope,
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2. Envelope of Tangents and Normals. Any curve may be re-
garded as the envelope of its tangents. Thus the equation of the

tangent to the parabola
M P = 2ma
atthepoint (0 .’/0) is

Y—%="(2—m)

Yo

or
2 nmz Y,
@ y="-*%

Hence the envelope of the lines (2), where y, is regarded as a pa-
rameter, must be the parabola (1), and the student can readily
assure himself that this is the case.

The evolute of a curve was defined as the locus of the centres of
curvature, and it was shown that the normal to the curve is tangent
to the evolute ; Introduction to the Calculus, p. 266, §4. Hence the
evolute is the envelope of the normals, and thus we have a new
method for determining the evolute.

¥or example, the equation of the normal to the parabola

y=2
at the point (xy, ¥,) is
z— oy + 220(y — %) =0

or T4+ 2Ty —dp— 223 =0,
and we get at once as the envelope of this family of lines:
y=3z+1 ®=— 4z,
or (@ — D=2
The result agrees with that obtained, Le., p. 264.

EXERCISES
1. Obtain the equation of the evolute of the ellipse:
Z=1a 008 ¢, y=>bsing,

a8 the envelope of its normals.
2, The same question for the hyperbola
2 = a 8eC ¢, y="btang.
3. . Obtdin the evolute of the cyeloid :
c=a@—sing),  y=a(l-ocosd).
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4. Obtain the coordinates (2y, y,) of any point on the envelope of
the normeds to the curve y = f(2):

& — x5 + (@) (y — ¥)= 0,
and show that the result agrees with the formulas of the Introduction
to the Calculus, p. 263, (9).
5. Obtain the evolute of the family of lines
B — a?A) z + 2a?ry = a(b? + a2)?).
Ans. The ellipse, z =2 =aA) — _ 2abA
b2 +a2x? b2 + @22

3. Caustics. When rays of light that are nearly parallel fall on
the concave side of a napkin ring or a water glass, a portion of the
table cloth is illuminated. TLet us determine the equation
of the boundary.

Suppose we have a narrow semicircular band, on the
polished concave side of which a bundle of parallel rays
fall. The rays are reflected at the same angle with the
normal as the angle of incidence, and so we wish to find
the envelope of the reflected rays. Take the radius of the band as 1.
Then the equation of the reflected ray is

1) y —sind = tan 26 (x — cos ).
To get the envelope of the family, we differentiate with respect to 6:
— co8 § =2 sec?26 (z — cos §)+ tan 20 sin §,
22 =2cosf — cos?20 cos§ — cos 26 sin 20 sin §
=2 cos ¢ — cos 26 (cos 26 cos § + sin 26 sin )

=2 cos § — cos 20 cos 6,

Fig. 48

or: z==§ cos § — } cos 34.
Substituting this value of « in (1) we get:
y = 4§sind — } sin 34.
But these are the equations of an epicycloid of two cusps, i.e. the one
in which a =20, b=14; cf. Introduction to the Calculus, p. 274.

EXERCISE

If the band is a complete circle and a point-source of light is situ-
ated on the circumference, draw accurately a figure showing the
reflected rays and prove that their envelope is a cardioid.
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4 Critigue of the Method. The method set forth in § 1 has been
given without any restriction on the functions, and it is easy to see
that exceptions occur. Thus if equation (1) be solved for a:

e=2z+VIZT
and f(z, y, «) be written in the form .
Sy Qy=ac—zcF V19—,

the equation df/0e = 0 now reduces to 1==0, and there is trouble,

And yet a—zFVIi—gi=0
is just as much the equation of the family of circles as is equation
1), § 1.

A sufficient condition for the applicability of the method, and a
condition which covers the most important cases which arise in
practice, is given by the following theorem.

TreeoreM. Let f(x, y, «) be continuous, together with its derivatives
of the first two orders, in the neighborhood of the point (xy, Yo, ). Let

(1) * f(“’o, Yo, a0)= 0, fa(xo) Yo, %)= 0,
and let P

2 V0 a0

@) PR A Jea # 0,

in this potnt, Then the equations .

3 JS(z,y, @)=0, Ju(2, 9, @)=0
define a curve which is tangent to each curve of the family
(4) f(xv Y a)= 0

in the neighborhood of the point in guestion.

From the theorem of Chapter V, § 12, relating to implicit fune-
tions, it follows, since the determinant (2) is the Jacobian of the
functions f and f, that equations (3) admit a simultaneous solution
of the form
®) z = (), y = y(a),
where ¢(«) and J{a) are continuous, together with their first deriva-
tives, in the neighborhood of the point « == ay, and where

() = o, (%) = Yo

Moreover, the derivatives of ¢ and ¢ do not both vanish. For, equa~
tions (3) become identities when # and y are replaced by ¢(«) and



ENVELOPES 193
y(=) respectively. Hence, on differentiating with respect to , we

have:
© { S+ S+ f,=0
Jou' + SV + foa=0 \

The second equation proves that ¢’ and ¢’ cannot both vanish,
since by (2) faa 0. Moreover, since f, = 0, the first equation re-
duces to
(7) Lo +S9' =0

Thus equations (5) define a curve having a continuously turning
tangent, and its slope is seen from (7) to be
LZCO N
(@)
On the other hand, since f, and f, cannot both vanish because of

(2), equation (4) defines, for an arbitrary value of @, a curve having
a continuously turning tangent, and its slope is

Hence, for an arbitrary value of « in the neighborhood of the
value ay, the curve (5) meets the curve (4) and since it has the
same slope, is tangent to it.

Remark. It will be observed that the results of this paragraph
are not merely destructive, but are primarily constructive. It is
here not & question of a rigorous proof of a theorem, the truth of
which no one doubts. The bare fact as to whether the method
illustrated by the examples of §1 has any standing is the first
question at issue, and that question is answered by the theorem
concerning implicit functions.

EXERCISES
1. 8how that the family of curves
y=g9(
have an envelope in the neighborhood of the point (z, ¥), where
%o =9g(%, %),
provided that, at the point (2, @),
Ga(Z, ) =0, Gea(Z, @) £ 0, Geal®, &) = 0.
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2. Show that the family of planes
i—p=a@—2)+By—%w) 0O(xp)=0,
envelop a cone with its vertex at (2, %, %), the generators being
determined with the aid of the further equation
T Y.
Q. Qs

State precisely the conditions of continuity (including the existence
of derivatives) you impose on the function 0, and show that a suffi-
cient condition can be formulated as the relation:

ﬂppﬂi —_ Zﬂapﬂaﬂp + anﬂg + 0.



CHAPTER IX

ELLIPTIC INTEGRALS

1. Origin and Definition of the Elliptic Integrals. The determi-
nation of the time of oscillation of a simple pendulum, Introduction
to the Calculus, p. 373, is given by the equation

® .f\/coso o8 1\/7f\/

[/ 2
smZ sm2

If we introduce a new variable of integration :

@) sing=s'mgsin¢, 0<0<e, 0s¢s,
we have:
1 8 .
Ecos§d9=smgcos¢d¢,
‘#smh - sm20 sin £ cos ¢
2 2 !
cosg=\/1—kisin2¢., k=sin§-
Hence
ds 2d¢

[sng__ Sm,g Vi st

and the final formula for ¢ is:

"
=t —_d® = pin&%.
3) t \/;Jvm, k 31n2

Here, ¢ can range through the interval —#x/2 < ¢ S =/2; ¢ is
measured from the instant when the bob is lowest.
We are thus led to the function

@ 0<k<1,

F(k, )= J =t s
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which is known as the Eliptic Integral of the First Kind in Legendre's
form. When ¢ = »/2, we have

(e
® K J\&_—W—_m*:ﬁ’

which is known as the Complete Elliptic Integral of the First Kind.
Art of an Ellipse. The determination of the length of an arc of

the ellipse z = asin ¢, y=beos ¢

was found to be (Introduction to the Calculus, p. 414):

&
scafvl—ﬁsm2¢d¢,

where e denotes the eccentricity of the ellipse.
We are thus led to the function

é
(6 E(k, ¢)= f vIZTTEsint ¢ de, 0<k<l,

known as the Elliptic Integral of the Second Kind in Legendre’s form.
When ¢ = n/2, we have:

H
) E=fv1-kﬂsin2¢d¢,

known as the Complete Elliptic Integral of the Second Kind.*

Thess are all tabulated functions, and abbreviated tables are given
in Peirce’s Tables. It is, therefors, of practical value to learn how
to refer to the above certain other integrals that arise in practice.

Jacobi’s Form. A second form of the elliptic integrals is known
88 Jacobi’s form and arises through the change of variable

z = sin ¢, —-géqbéf, —-1s251
Thus

® The Elliptic Integral of the Third Kind is

®
d¢
ot y P)= .
Uy = #) I(1+usin'¢)\/1—udn’¢
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» e 1 &
8) F(k, = —_——, K= P tatomet——
@) e ¢ /\/(1-—5}2)(1 —k%?) /\/(1 ~z)(1—k%?)

©9) Ek, )= J vi-—¥s A=F2 Vl =2

The Complementary Modulus. The constant, or parameter, k,
s known as the modulus of the integral; and X', defined by the
squation
(10 B4rr=1, 0<k <1,

18 called the complementary modulus. The correspending value of
K is denoted by K'.

(1) K'=J.___d_‘£_._.
V1—k"sin? ¢

The Most General Elliptic Integral. Any integral of the type
fR (=, V(1 — 25)(1 — k%)) da,

where R(z, y) is a rational function of z and y, and the integrand,
n being simplified, actually involves the radical, is called an ellip-
‘ic tnfegral. Moreover, the radicand may be any polynomial of
legree three or four, with distinet roots.

2. Integrals Reducible to F(k, ¢). Any integral of the form
de
\/(—;_‘—(;2—) or \/mi
where @ is a polynomial of the degree indicated, having all its

roots distinet, can be reduced to F(k, ¢) and thus evaluated by the
Tables in any numerical case.

da
VEAd ~ o)1 — &)

I.—TrE INTEGRAL

The standard form is

1 i dz i}’(k )
® hf\/(l—m')(l—k’z’) »re
% = 8in ¢, —-1s52g], "‘E§¢§%'
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There are two other forms corresponding to the case that the
roots of G(z) are +1, + 1/k, pamely:

@z 1 .

o [r=Em
i g dz 1
@) f\/@ztﬁ(m taesgy

In Cases (1) and (2) the radicand is positive in the intervals
marked with a heavy line’in Fig. 46. In Case (3) the intervals in

-1 0 1

1 1
H x
Fic. 46

which the radicand is positive are the supplementary intervals and
are indicated by heavy lines in Fig. 47,

-1 o 1

i

1
2
Fic. 47

It is obviously no restriction to consider only positive values for
z, since, if z is negative, the substitution #’ = — x brings us back to

the former case.
The integral (2) is reduced to the form (1) by the transformation :

1 1

=7 T=o, 0<t<;
(2,) = 277 '"—'_z“z_'
o V(l—w’)(l—kz) \/(1—t)(1—kt2)
The transformation required for (3) is:
_Vat -1 1 .
b=, z = e 0st<1;

@) dz = t .
f\/(a:’ — 1)1 — k2x?) VI -1 — ki)

The student should perform each time the actual analytic work
of making the substitution.
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Ezample. Required to compute the value of the integral

1.3 dz '
\f V@ -1)1—12) -

Here, k=1}, ¥ =43, and the upper limit of integration in
the second integral (3’) is obtained by setting # =4 in the formula
of transformation. Thus

V-1
¥z

=2V3__ 6928,
5 5

and we need to know F(}V3, ¢), when sin ¢ = .6928,

Turning to Peirce’s Tables, p. 122, and observing that « here has
the value 60° and ¢ = 43° 51/, we have to interpolate in the column
headed 60°. The entries in that column are as follows:

¢ =40°  .7436

¢ = 45°, 8512
Since 3° 51' = 3.850°, interpolation by the rule of three, or first dif-
ferences, gives the result .8265. But when the differences are so
great, the last figure is meaningless, and even the third figure may
be inexact by a unit (or possibly two).

Reference to the larger tables of Legendre * shows that the valne
to four places of decimals is .8260,

.1076

A More General Case. We are now in a position to evaluate the
integrals

. o dz

, 0<A<B, 0 A;
@ fV(A2~ﬁ)(B—z2) <4< ses
(ﬁ)./‘ E:f_ ’ b<4<B, B<zZSw;

V(AT S (B — o¥)

o . dx

, 0<A<B, A4 B,
o f V@ = BB - < sos

The transformation
t= E/ 4, = At,

carries these integrals respectively into the integrals (1), (2), (8)
divided each time by B. Moreover, k= A/B.

# Legendre, Traité dee fonctions elliptigues, Paris, 1826, vol. II, p. 202.

\
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EXERCISES
Compute the values of the following integrals :

1. f dz : Ans. — 0.5356
VA -1 - 17

2. g dz . 3. : dz .
f\/a -1 - 129 .f\/(a:’ —1)A <= 0.01=7)

Express the following integrals in terms of F(k, ¢) or K.

4. ; dz . 5. j d .
f\/(zs — %) (49 — =) J VB -2a)(5 -32)

8. . _dz . 1. ‘ de .
,[ V(@ — 925 — 2%) .f V(@ = 9)(26 — %)

II. — Tue INTEGRAL f dz
V(1 — 2 (k" + k%?)

There are two cases here, as indicated in the figures. We give
the transformation and the result, leaving the computation to the
student.

o [ dz [ dt  osesi,
@ .f V(I =) (E T+ "= " f VA= o)[I-kf) =t=

t=\/1-—32, rz=V1-=¢

-1 Lo ' 1 ‘
Fig. 48a
o de _ dt
= ’ 0t
@ f V@ = 1)K + ¥a?) f VA=#){ - kr) stsh

= #—1, ] 1 .

z i-n

~1 [] 3 »
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To these integrals the following can be reduced by the trans
formation

Y=~ z=Cy:

() ' da -1 : dy .
V(Cr—at) (A4 B2*) VA +BC) VA-) (K i)
“0<ys1,

) : de __ 1 dy
[ V@E— )@+ FD) VATBC) VD))

12y=s .
In each case,
BC ' A -
k= v Be=— A, B, C, positive
VEFBCE VAL BC? » 5 T PO8
I11. — THE INTEGRAL f dz
’ V(I + )1 +2=2?)

The upper limit of integration may be any positive number. We
have:

2 dz . a
% - —, 0 1.
© xf V(I + )1 + k) f V(1 -#)1 — k) sts
T 11

t=

= .
vife vi—ea
Finally,
” ; dz =1 dy
¢ f V@ + BN+ D) AD) VT A + o)
A, B, C, D, positive, BC < AD, Dz=Cy, k=2C.

4D

3. Continuation: f \/%z(_z) .

Any polynomial of odd degree with real coefficients has at least
one real root. Let z= ¢ be such aroot of Gy(x). Then the integral

da
V&)
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ean be referred to an integral already in § 2 or § 4 by meéans of the
transformation
£ —c=2? or =—12 0=z
according as the values of z between , and z, make 2 — ¢ positive
or negative.
Ezample. Consider the integral :

~

1 i .
V= (= 1)z —2)(z—3)
Let 2 — 1 =-—22 The integral thus goes over into

—2dz =2 ¢ dz .
VA +2H2+2) VA + 292 +2)

The substitutions z — 2 = — 22 and z — 3 =—2? would have led
to other forms equally tractable.

dz
VG, (%)
Let G,(x) be a polynomial of the 4th degree, whose roots or factors
are all distinct. If G,(z) has a real root, # = «, the transformation

1 37=¢+15
Y

4. The General Case,

1) y=

- ’
T—a

will carry the integral into an integral of the form treated in § 3,
namely : :

f _dy .
vV Ga(y)

It remains, therefore, merely to discuss the case that
@ Gi(@)=(= +p= + 1) (@ + P + @),

0<dqi—pl, 0<4q:—pj
the second factor not being identical with the first. Let

(3) x=y+h.
Then #+pz+a=y+py+4q, D+p2+a=y+py+a
where gi=r+ph+q, gi =R+ ph + G-

Let us seek to determine % 8o that ¢ and g will be equal:
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=g B 4 pih + gy = h* + pah + gy,
@ (Pr—pP)h+ ¢ —q=0, P10,
Pr— 1

We see, then, that this is possible except in the case p, = p,.
But here we attain our ultimate end immediately by the substi-
tution

y=z2+ip=2+§p:

Secondly, we can reduce the constant terms, ¢j and gf(=g}), to

unity by setting

(5) y=xz
and choosing * k=Vq =Vq,
Thus

G (z)= k(2 + Pz +1)(2+ Pyz+1), P+ P,

‘We now make the final transformation :

z—1 141

t= o e———

©) z+1’ =1
_2+P)+ 2Py
Thus, 24 Pzz+1= ’(1 _(t)z Q,

with a similar formula for the second factor. We observe that
neither coefficient, 2 4+ P, or 2 — P, can vanish,{ and moreover,
that these coefficients are either both positive or both negative.
For, the quadratic polynomial in z has no real roots.

B
Ezxample. u= dz
V@t — 4z + T2 — 62+ 13)

Here, h=3,and s =y + 3:

%= ’ dy .
V@ +2y+ 9@ +4)
Furthermore, k=2, y=2z,

* That ¢} > 0 is clear from the fact that otherwise the quadratic polynomial
in y would admit a real root, and hence the polynomial in # would, too.

t It 2 — P, were := 0, make the transformation ¢! = 1/t, and the contradiction
used in the proot below follows.
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%
1
"—_—'1 dz .
2) V@2 + HE@+ D) .
. 14¢ 2dt
Fln&lly, z=1—-——t, dz=(—1_—‘);,

U= Lj—@__.
Va2 VE+Ba+ 0

To compute this integral in terms of F(k, ¢), set (§ 2, (6))
-1 —_—T 1

t= y k=m—, k=

Vite Viog V3 3

=

vi

u=lv dr
\/ﬁf A= =17

5. Computation by Series. We have already seen how the fune
tions F'(k, ¢) and E(k, ¢) can be computed by infinite series; Infro-
duction to the Calculus, pp. 414, 416, These series do not, however,
converge rapidly when % is nearly unity. In this case, a transfor-
mation can be made (Landen’s Transformation, § 6) whereby either
{a) ¥ will be replaced by a smaller value, k;, and thus the new
series will become available for practical use; or (b) k¥ can be re-
placed by a still larger value, so near to unity that it may be set
=1 in the integral, and then the latter can be computed by means
of the indefinite integral.

6. Landen’s Trapnsformation. We give the transformation with.
out motif.* Starting with the integral

d¢
we introduce a new variable of integration, y, by the equation
@ sin(2y ~ ¢) =ksin 4,

# The mathematicinns of the eighteenth century were men of great resource-
fulness in formal work, and many of the leading results in the theory of the
elliptic integrals and functions were deduced by inspiration rather than by
ressoning. On the gther hand, the modern theory of transformation of the
elliptic transcendents is too complex to admit of a brief deacription.
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or ite equivalent,

@ was=p Mo o ma@- =il

From the first of the equations (3) we have:

1+ktan¢ '

_ 1+ keos2y
@ d"""21+2kcosz.p+k2d""

From (4) it appears that dy/d¢ is always positive, and so, as ¢
increases from O to =, the determination of y with which we are
concerned will increase from 0 to «/2.

Furthermore, from the first of equations (3), sin?¢ can be com-
puted, and thus we find :

®) VI— Wi = Lt K082y
V14 2kcos 2y + &2
From (4) and (5) we bave:
® d¢ - 2dy 2 dy¢
W—L’smzqs V14 2keos2¢ + 22 1+k\/1-—k‘sm2¢
- 4k —V1i—-K
7 M=tk k=l=Vi=-H
@ ke LvieH

On integrating equation (68) we find :

-2 4y
vV1—ktsintge 1+ kf VI =TI sinty

where the limits of integration, ¢ and ¢, are connected by (2), or
either of the forms (3).
To sum up, then, we have:

2
F(k, ¢)—m F(ky, ¢)
= 2VE
1= 1““——+ k:
The new modulus, k,, is greater than %k, but less than1. For,
first, if

®
sin (2¢ — ¢)= Kk 8in .

2vk 4k
Zve >k d 4>kl 4k
1+k>k’ then (1+k)! an >k +k)

»
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This last inequality is true, since 0 <%k <1; and now, starting
with it, we can retrace our steps. In a similar manner it is shown
that k, < 1.

If k is nearly = 1, a few repetitions of the transformation (7) will
lead to a function F(k,, ¢,), Whose modalus %, is so nearly unity

that it may be replaced by 1 and the integral thus evaluated. Since

T+k \/zc

Fk, 4)= ko[22t e, ),

On setting &, = 1, we find :

we have:

[
Pk, b)= [ 52 =logtan(]

é
In ),
+ 2)
For a detailed study of a numerical case, cf. Byerly, Integral
Calculus, 2d ed., chapter on Elliptic Integrals.
Reducing the Modulus. The transformation (7) can be applied in

the opposite sense, and thus the given integral is referred to one
with smaller modulus. The formulas now become :

Pk, v)="EEF @, 9),

) - 1—\/1+k§
1+V1+k’

Here, k; and ¢ are given, and k¥ and ¢ are computed from the
second line of (9). The student may find it convenient to rewrite
(9), mterehanging ¢ with ¢ and &k with %,. A numerical example is
worked in detail in Byerly’s book, l.c.

After one or two applications of the transformation (9), it may be
well to finish the computation by using the series.

Integrals of the Second Kind, f V1 —k2sin? ¢ d¢p. Landen’s

transformation can be applied to these, too, and thus the computa-
tion carried through; of. Byerly, l.c. An excellent treatment of
this subject, including also the rectification of the hyperbola and the
lemniscate, and the complanation of the central quadries, is found
in Bchlsmilch, Commendium der hikeren Analysis, vol. 2, 2d ed.

tan(¢ — !P)—

ta.n Y.
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7. The Elliptio Funotions. If we set

v de
== y -1 ’
* J\/(l-—n:’)(l—lﬁzz) gss1

the equation represents u as a function of #. The inverse function,
z, regarded as a function of u, is called the sine amplitude of » and
is written

z=sinamu or Z=8Dnu.
Two other functions are defined by the equations:

V1 -z?=cosamu or enu;

V1—kz?=Aamu or dnu

(read: “delta amplitude of u” or “dnw.) These functions are
known as Elliptic Functions, and any rational function of them is
also called an elliptic function. For a brief treatment of them, ef.
Byerly, le. A more extended study is found in Pierpont’s Fune-
tions of a Complex Variable, Chapters X-XII. Cf. also, both for the
plliptic integrals and the elliptic functions, Schlomileh, l.c.



_CHAPTER X

INDETERMINATE FORMS *
1. The Limit g Let two functions, f(z) and F(2), be continu-

ous, in the interval

@ asr=sbh
and let
@ S(@)=0, F(a)=0
The ratio of these functions,
J(@) :
@ F@)’

will not be defined when x = a, since it takes on the form 0/0, and
division by 0 is impossible. Nevertheless, the ratio (3) may approach
a limit when z approaches a, and this is, in fact, usually the case in
practice. For example,

x—a 1 X —a . 1
== l = = —)
® x? — a? z+%?’ — Lli?x+a 2a’
(%) lim 322 1,
p0) x

Suppose, furthermore, that each function has a continuous deriva-
tive at every interior point of the interval, and that F'(z)+ 0 there:

4) F'(x)=£ 0, a<z<b
By the Law of the Mean, Chap. V, § 2,
S@+B—f@=h(X), Fla+h)—F@)=hF(X),
O<h<b—a,
where a<X<a+h, a<X'<a+h
* This su;:ject was formerly made much of in a first courss in the Calculus,
donbtiess becauss it yielded a vast fund of problems in differentiation. But we

have not yet needed it, nor shall we find an application for the results tiil we
take up Improper Integrals in Chapter XIX,
208
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Bince (2) is true, we have:
®) [(g-{-k):f'(X) .
Fla+k) F(X%)
If, now, these derivatives exist and are continuous at the point
x = d, t00; and if F'(a)s 0, then*-

. ®) 4 f’!X!__f’a_
® i L~ £ = Fe

For example,

. e®—1 e
0 i ==
But if, as in the case of
(8) E:Eggs_w a=0,

J'(a) and #'(a) both vanish, equation (6) breaks down, nor can we do
anything with (5) since we do not know how Xand X' vary relatively
to each other. This case can be dealt with as follows,

GENERAL1ZED LAwW oF THE MEAN. If f(=) and F(2) are continu-
ousthroughout the interval a < = < b and eack has a derivative at all
interior points of the interval, and if, moreover, the derivative F'(z)
does not vanish within the interval; then, Jor some value ¢ = X within
this interval,

JO)—f(a) _ r'(X)
9) F‘(Qggt_‘ﬁ‘(‘,(;)j F'(X) s a< X<b

* In this case the result can be obtained at once, gince

1@ _fle+W=/(@) /Fla+h= Fa)
F(z) h k ’
and the limit of the right-hand side isseen to be J'(a)/F'(a). Thisis knownas
* 'Hospital's Rule,” dating from 1696.

The limit is also called the “true value™ of the * indeterminate form *
J(@)/F(z) for £ = a. Both terma are based on a false conception. In the early
days of the Calculus mathematicians thought of the fraction as really having a
value when z = g, only the value cannot be computed because the form of the
fraction eludes vs, This is wrong. Division by 018 not a process which we
define in Algebra. Tt is convenient, however, to retain the term indeterminate
Jorm as applying to such expressions as the above and others considered in this
chapter, which for & certain value of the independent variable cease to have a
meaning, but which approach a limit when the independent variable converges
toward the exceptional value.
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Proof.  The fanction *
_SO-S@) rpuy— pa)]— -
#@)= FA=L08 (F @)~ P@)- L/ @)—1(@)]
satisfies all the conditions of Rolle’s Theorem, Introduction, p. 430,
and hence its derivative,
1€ e\ J‘b) —,f (a)
$E=Fo)— Fl@

must vanish for a value of # within the interval. Hence

F'(@)— f'(=),

.ﬁb)_-l.(l_"l. F(X)—r =0
F)— Fla) (X)—s'(X)=0, a<X<b
By hypothesis, F'(x) is never 0 in the interval. Consequently we
are justified in dividing through by F'(X), and thus (9) is estab-
lished.
0

The Limit o’
for determining the limit of the function (8). Applying (9) to an
arbitrary sub-interval (a, ), when ¢ < z < b, and remembering that
J(a)=0 and F(a)= 0, we see that

2y _ [
(10) ﬁﬂ'(;)"ﬁ%’ a< X<z,

where now we have the same X in numerator and denom'ma.to'r.

When 2 approaches a, X will also approacha. Hence, if f'(z) /F'(x)
approaches a limit, f/(X)/F'(X) will approach the same limit, and
go will its equal, f(z)/F (x). Thus we have:

im L& —1im L@,

@ i )~ o F(a)

If, then, it turns out on differentiating that f’(a)=0 and #'(a)= ¢,
we can differentiate again, and so on.

Ezample.
1—coszx sinz 1

im&—8inz_ lim 822 _1,
Hm=—s - 322 w0 6z 6

Concluded. We can now deduce a more general rule

» We can divide by ¥(b)~ F(a), since
F(b)— F(a)=(b— a)F'(I), el Y <D,
and naither factor on the right is 0.



INDETERMINATE FORMS 211

Remark. The Theorem can be extended to include the case that
f(z)/F'(x) becomes positively infinite or negatively infinite. The
function f(x)/F(«) then becomes positively infinite or negatively
infinite.

Moreover, instead of approaching a from above, z may approach
a from below, or  may become positively infinite or negatively
infinite.

EXERCISES

Determine the following limits:

1. lim fR72 2. lim®R2—1 4 ypo-b,
o114 2 e T, = 2
T2
4. liml—co8z 5. lim ST —2, 6. lim %ot'®,
=0 tan?z ety tAD X — 2 stn CSC1 2

2. The Limit g— Consider the fraction

X
1) %4(-3)

where f(a) = and F(a) =ow. We wish to determine

@) lim L&)

s F(z)
Simple cases, like
. 2n~—1 . z
E3n+1’ E\/zz_l’

are dealt with directly by obvious algebraic reductions; ¢f. Intro-
duction, p. 29. In less transparent cases the following theorem
often makes possible the evaluation.

TaroreM. Let f(x) and F(x) be defined in the inferval a < « S b,
and le f@) =<, F(a) =
Let f'(x) and F'(z) exist at each point of the above interval and let
F'(z) be different from O there. If f'(z)/F'(x) approaches a limit as
¥ approaches a, then f(x)/F(z) also approaches a limit, and these
limits are equal:
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For oconvenience, let a = + o, the interval then becoming
g Sx<w. By the Generalized Law of the Mean, § 1, we have

J&)—f@) _F(X) /
F@-F@) F(X) gd<m  F<X<m
Hence
(3) _(_"‘_’2_ ﬂ_l A= HM
F(z) F’(X) - 1—f@")/f(=)

Now let # and 2’ both become infinite; but let  increase so much

more rapidly that
im L) < im FE) o,
e, ' f( ) g=00, & = F(I)

Then limA=1. Now, X becomes infinite, and hence the whole
right-hand side of the first equation (3) approaches the limit which
J'(x)/F'(z) by hypothesis approaches. Thus the theorem is proved.*

If f/(»)/F'(z) becomes positively infinite, or negatively infinite,
the same is true of f(z)/F(z).

If a is a finite point, the same reasoning still holds, with obvious
modifications in details. Or, this case can be referred directly to
the above by means of such a substitution as

y=1/(z — o), z=a+1/y.

This theorem has the same advantage as that of § 1, namely, that,
if we do not get a result after the first pair of differentiations, we
may differentiate again and again. If, after % repetitions, we do
get a result, then the original ratio approaches this same limit.

Ezample 1. limg—:-
If n 0, the limit is obviously 0, since the numerator remains
finite and the denominator becomes infinite. If, however, n >0, we
see that the above ratio approaches 0 provided ng1. Ifn>1,a
finite number of repetitions will lead to a ratio whose limit is 0, and
thus the given ratio approaches 0 for any fized value of n.

Ezample 2. 133!1-":-}‘2, 0<a, O0<B.

If =1, we have .
logz_ i 1
lim = = im o

# The theorem is due to Cauchy, who gave a proof under certain restrictions.
The complete proof, given above, is due to the Austrien mathematician Stols.
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If o + 1, write

xhla

Since the variable standing within the brackets approaches 0, and
since & i8 positive, the whole right-hand side approaches 0, and thus
the original variable approaches 0 in all cases.*

(logz)* [log :c:]‘_
=

3. The Limit 0-o. If f(x) approaches 0 and ¢(x) becomes in-
Snite, the limit approached by the product may ofter be determined

by writing
_S@ o _ e
TO¥D =i " U

thus throwing the variable into the form discussed in § 1 or § 2.
Example. lim zlogz.
m2al)

zlogx =1—0ﬁ), lim (z log )= lim
a1 sl 220

logz
-1

= ;g’l(— z)=0.

4. The Limits (° 1, «0° o0 — 0. The function f(x)¢*® can be
written in the form
F(@)#@ = gpr1omse,

When one factor in this last exponent approaches 0 and the other
becomes infinite, the limit of the exponent is of the type considered
in § 3. Thus we are led to the limits which may be symbolized as
0, 17, oot

Ezxample. limz=.
wiiz)
Since lim (zlogz)=0 by § 3,
zd)

lim 2= =lim e*1¢* = 1.
Tk ol

The limit of f(x)— ¢ (), where f(x) and ¢ (z) both become infinite
with the same sign, is usually best treated by special methods.

Ezample. lim jVa? + 11—z},

Va4 l—alifvat+1l4at 1 ,
Va+l4 e vVa+i+z
® A thorough appreciation of the meaning of the graph of the functiony =z~

Introduction to ths Calculus, p. 180, is important in the study of the present
chapter. .

Write V@ +1—z=4
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and the limit is obvious. Or, the method of series may be used:
e 1\} 11
\/:o’+1=x<1+a7) _—_m{1+§;2+ ...},em

EXERCISES ON CHAPTER X

Determine in the most convenient manner possible each of the
following limits.

1. lim ge. 2. lim ame, 8. limgee, 0<a.
4. hm._l_gg_w_ B. hm__(_l.oj_wt__
r.-.»l—}-a:-f-:z:2 =01tz 427+ 2

8. limare—logz. Suggestion: z"elogzr = (w“l)( z)
e e* x

. - . x* o<a

z 2 3 l = y

7. limare~*(logz) 8 lim {og o) ( 0<g.
: @ -

9. lime=cot1z. 10. lim¢ - 11. lim (8in x)*"=

"
wEy



CHAPTER XI

LIRE INTEGRALS AND GREEN'S THEOREM. FLOW OF HEAT

1. Work. We have defined the work, W, done on a particle by a
variable force, F, when the particle moves along a straight line and
the force acts along the same line, by means of the integral (Intro-

duction to the Calculus, p. 338):
]

) W= f Fdz.

Here, F may be any continuous function of 2, positive or negative,
and thus W is also a signed quantity. The interval throughout
which the particle is displaced may be variable. Thus if ¢ be any
point of the interval a < # <b, and the particle be displaced ‘rom a

to §, the work done will be ¢
W= f F dx.

Definite Integral as Function of Upper Limit of Inlegration. We
have here before us a first example of a function represented by a
definite integral, the upper limit of integration being the independ-
ent variable. Let f(m) be continuous in the interval a S £ b, and
let ¢ be any point of this interval. Then

Fros

is a function of ¢, which we will denote by ¢(£). If we change the
notation, denoting the variable of integration by ¢ and the upper
limit by x, we have: *

#@= [roa

* The notation jf (z) dz should be avoided till the student is thoroughly coun-

a
scious of the different meanings of the letter 2 in this expression.
215
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The function ¢(w) thus represented or defined admits a derivative,
obtained as follows. Since

29 +h
#ar-+ 1)~ $(a)= [ 1o as
=y
we have, on applying the Law of the Mean,
eo+h
ff(t)d¢=hf(wo+0h), 0<b<1.
)

Hence
$(2 + ’2— $(E) _ f(zg+6h) and lim2EF "z = (&) — (a)

Thus we have proved the theorem that

& [roa=re.

EXERCISE

Prove that ga—’ff(t)dt=—f(x).

2. Continuation: Curved Paths. Suppose the particle describes a
curved path C in a plane, and that the force, §, varies in magnitude
and direction in any continuous manner. What will be the work

v % done in this case ?
Ko _—n Suppose the path C is a right line and the
= force, though oblique to the line, is constant in
:r %. magnitude and direction; Fig. 50. Resolve

the force into its two components along the
line and normal to it. Surely, we must lay
down our definition of work so that the work done by § is equal to
the sum of the works of the component forces, Now, the work done
by the component along the line has already been defined, namely,
Floosy, where F'=|§| is the intensity of the force.

It is an essential part of the idea of work that the force overcomes
resistance through distance (or is overcome through distance). Now,
the normal component does meither; it merely sidles off and side-
steps the whole question. It is patural, therefore, to define it as

Fig. 49



1

LINE INTEGRALS AND GREEN'S THEOREM 217

doing no work. Thus we arrive at our final definition: The work
done by § in the particular case in hand shall be
@ W= Flcosy.

A second form of the expression on the right is as follows. Let

X and Y be the components of § along the axes. Let r be the angle
that the path 4B makes with the posi- v

tive axis of . Then the projection of 3 N B
% on ABis equal to the sum of the pro- vl /
jections of X and Y on 4B, or ¥ v
Feosy = Xcosr+ Ysinr. p
Wt
On the other hand, o i
. ¥ic. 50
29 — Xy =1lcO8T, Yo—y=lsinr.
Hence
@ W= X(z, — 2)+ Y (¥ — y1)-

The Qeneral Case. If C be any regular curve, divide it into n arcs
by the points 8, =0, 8, -, 8,1, 8, = L. Let §, be the value of § at
an arbitrary point of the %-th arc, and let y} be the angle from the
chord (s,, s,) to the vector §,. Then the sum

2 F} cosy, 1, .
=l

where I, denotes the length of the chord, gives us appruximately
what we should wish to understand by the work, in view of our
physical feeling for this quantity. The limit of this sum, when the
longest I, approaches 0, shall be defined as the work, or

3) W=lim 3 Fjcos Yl
=0 )
Since lim-& =1,
As,

it is clear that the above limit is the same as
1

lim i F, cosy, As, =J‘F cos y ds.

For, the conditions of Duhawmel’s Theorem are fulfilled if
w, = F, cos y, As,, B = F,cosypl,,

since B (ﬂ)(@iﬂ) b , and thus  lim Bi_1.
a, \F,/\cosy,/\As, @
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We have, than, a5 the axpression for the work,

@ W= [ Fcosyds.

A pecond formula for the work is obtained from (2), namely,
') W= 1im§(x; Az, + Y} Ay,).

This limit can also be expressed as an integral. Since

lim—3% 1  and  lim—2% __73
As, co8 1, As sinr,
we see that, on setting
o, =(X,cosr, + Y, sinr,)As, B = X! Az, 4+ Y} Ay,,

the conditions of Duhamel’s Theorem are fulfilled, and hence the
above limit has the value:
2

(6) J‘(Xcos-r+ Ysinr)ds or J(X%:+ Y%)ds.

Thus the limit (5) is seen to exist, and to have for its value the
integral (6). The limit (5) is an example of a line integral, and is
expressed by the following notation, § 3:

«',3)
¢f) W=fXdz+ Ydy or JXd:c-{-Ydy.
(s, 8)

The extension to three dimensions is immediate. Formula (4)
requires no modification whatever. Formula (7) is replaced by the
following :

(@', ¥, ¢)
®) W= (Xdo4+Ydy+Zdz or J'de +Ydy + Zd.
(2 ) 4

Example 1. To find the work done by gravity on a particle of
mass m which moves from an initial point (y, ¥, %) to a final
point (&, ¥, 2,) along an arbitrary twisted curve, C.

Let the axis of 2 be vertical and positive downwards. Then

X=0, Y=0, Z=myg;

: W=JX@+Ydy+Zdz==fmgdz=mg(z,—-z.,).
N
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flence Yhe work &u‘m ® equal %o fhe product of the fores by the
difference in level, and depends only on the initial and final points,
but not on the path joining them.

Ezample 2. Consider a field of force, corresponding to a force
function, w (Chap. V, § 17). Then the components of the force
which acts on a unit particle at any point of the field will be:

du ou ou
=% % ‘T
Let the particle describe a curve C in the field, running from the
point 4 to the point B. The work done by the field on the particle
will be

W= f——d.’c+ —dy +2udz_u]a=u,—-u‘.
Hence the work done is equal to the change in value of the force
unction, taken along the path.

EXERCISES

1. A well is pumped out by a force pump which delivers the
water at the mouth of a pipe which is fixed. Show that the werk
done is equal to the weight of the water initially in the well, multi-
plied by the vertical distance of the centre of gravity below the
mouth of the pipe.

2. A meteor, which may be regarded as a particle, is attracted
by the sun (considered at rest) and by all the rest of the matter in
the solar system. It moves from a point 4 to a point B. Show
that the work done on it by the sun is

W= Km(l —1),

where 7, and 7, represent the distances of A and B, respectlvely,
from the sun, and Kis the gravitational constant.

3. A straight wire carries a current, thus generating an electro-
magnetic field of force. The forece which acts on a unit north pole
is inversely proportional to the distance from the wire, and in the
direction at right angles to the wire and to the perpendicular
dropped on the wire. Find the work done on a unit north pole,
when the latter describes a circle, the axis of which lies along the
‘wire.
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8. Line Integrals. The limits (8) and (5), § 2, are typical illus
trations of how line integrals come into mathematics. Let 8 be a
region of the (z, y)-plane, and let
0: z = f(t), y=¢(), LSt
be a regular curve lying in 8. Let F(z, y, t) depend (continuously)
on the point (%, y) in § and the point ¢ of C. Divide C into n arcs
by the points 8,=0, 8;, -, 8., 8, =1, where 8 denotes the arc, and

I, the length of C. Let (2, y;) be an arbitrary point of the %-th are,
(81, 8,), and let t! be any second point of the same arc. Then

) lim 3¢ Fai, v, ) 0= [P
(4

is defined as the line infegral of the function F along the curve C.
That this limit exists is clear from Dubamel’s Theorem, since
i

@) lim z F(z, v, t,) As =JFds
el ™1

is the ordinary integral of F(z, y, t), a continuous function of a.

It is particularly to be remarked that, in the definition (1), As,
is not a signed quantity, but is essentially positive. Thus the value
of the line integral (1) does not depend on the sense of integration
along C. We might equally well integrate in the opposite sense;
the result would be the same. On the other hand, the line integrals
presently to be defined are signed quantities. Reversal of the sense
of integration along C reverses the signs of these integrals.*

Definition of the Line Integral J Pdz + Qdy.

Let P be a function of (z, y), continuous throughout 8. Let C be
given as before, and let C be divided into n arcs by the points
(s %) Form the sum:

@ 2 P(x}, yi) Ax,, Am, =2, — @, 4,

® It might seem that the integral for the work, W=5Fcos¢da,in an exoep-

[
tion, since reversing the sense in which the particle describes O reverses the sign
of the work, But when the sense is reversed, ¥ is replaced by its supplement.
# — ¥, sud thus the sign of cosy is reversed.
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where (z}, v,) is any point of the kth arc. Then this sum ap
proaches & limit when n'becomes infinite, the longest arc approach.
ing 0. For, let * = w(s), where s, increases with . Then
Az, = w(8,)— w(3; )= As, cO8 1}
Now n '

@) lim 2 P(z,, y,) cosr, As, =chos rds
N=© ]

is the ordinary integral of Pcosr, a continuous funetion of s
Hence the limit (3) exists and is equal to the mtegral (4). We
write : (@', b

(5) lim 2 Pz, ) Az, = | Pdz or [Pd:v.
1)) v

If Cis divided into n arcs and the extremities numbered in the
inverse order, the new variable (3) approaches as its limit the
negative of the former limit. Thus reversing the sense of the inte-
gration reverses the sign of the line integral, or

(a’, b)) (a, b)
(6) Pdx = — | Pdz,
(%) (@)

the ecurve C being the same in both cases.

Thelimit of (3) is precisely of the type (1), and thus may be written:

(N J Pcosrds.

When, however, the sense of the integration is reversed, r is re
placed by r + =, and so the sign is changed.
The line integral

®) f Qdy f Q dy

is defined in a similar way. Finally,

', 39
@  lim 2 [P(=i, %) 6z + Q(2h, ¥i) 8% =f1’dw + Qdy

RED ) (& 3)

or JPd:c + Qdy,

for this limit is evidently equal to the sum of the line integrals (5)
and (8).
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The identities (4), (B), (C) are usunally referred to in the litera-
ture as Gween’s Theorem (1828) or Gauss’s Theorem (1813). Such
identities go back, however, much further, appearing (in the case of
volume integrals) as early as 1760/61 in work of Lagrange’s, The
theorem of Ex. 5 below may, however, properly be called Green’s
Theorem. Cf. a note in the author’s Funktionentheorie, Vol. I, 2d
ed., p. 600.

EXERCISES
1. Extend the integral
ydx — zdy
a2 + yz

in the positive sense over the boundary (2) of a circle whose centre
is at the origin; (¢f) of a circular ring with its centre at the origin.
Ans. (i) —2m=; (i) O.

2. Show that the integral

Ja:dy—ydz,

extended in the positive sense over the complete boundary of any
region, is equal to twice the area of the region.

. ov ov
3. Setting P=u5§ Q_u@,
show that
S Sienes
9 (=, y)
8
. o =—u
4. Settlng P = U a—'y Q u az
show that
3"» 3’0 au v au ov ov
ff oz ayz a3 +ff 52 0 ayay> A== v
. O, Ou
5. Betting Au = P + 8——3/9’
show that

ff(uAv-—*uAu)dS f( a—v%—'—;)d&

This equation is properly known as Gireen’s Theorem.
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6u
ffamz o ds—_‘ 3

7. If u is a solution of Laplace’s equation,
0% | Oy
T =0,

SSLET+ @)oo= - frfie

8. If u is a solution of Laplace’s equation, show that

J‘——ds— X

9. If u is a solution of Laplace’s equation, which is not a con

stant, show that '
J‘u? ds < 0.

5. The Integral [ Pdz + Qdy.

8. Prove that

show that

TrroreM 1. Let P and Q be two functions which, together with the
derivatives 0P/0y and 0Q/0x, are continuous within and on the bound-
ary of §. Let
@) oP_2Q

9y o=
at every point of 8. Let 3 be any region lying in S; the boundary C
of 2 may coincide in part (or wholly) with that of 8. Then

Jsz+ Qdy=0,

the integral being estended over the complete boundary of X in the posi-
tive sense. .

The proof is given immediately by means of the relation (C) of
§ 4, since the double integral has the value zero.

TreoreM 2. Conversely, if P and Q are continuous, together with
0P/0y and 8Q/3x, within and on the boundary of 8, and if

[de+Qdy=0,
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C being the boundary of an arbitrary region = lying in S, tAen

oP_0

oo
al every point of 8.
Suppose the theorem false. Then the continuous function

oP_2Q

oy oz
must be different from 0 at some interior point A of S, and hence
must be either positive at every point of a suitably chosen neighbor-
hood of A (say, throughout the interior of a small circle about A4,
lying wholly in 8) or else negative throughout such a region. But
then the double integral of (C), § 4, could not vanish when extended
over this region; and since the line integral which forms the right-
hand side of (C) vanishes by hypothesis, we are led to a contradic-
tion. Hence the theorem is established.

EXERCISES

1. Prove by an example that the following theorem is false: Let
P and Qbe two functions which satisfy the conditions of Theorem 1;
and let C be a simple closed curve lying in §. Then

J}a+9@=a

2. Let 8 be a ring-shaped region bounded by the curves C, and
C;,and let P and @ satisfy the conditions of Theorem 1 in §. Then

[Pdw—}- Qdy=JPdm+ Q dy,

where each integral is extended in the clock-wise sense over ()
or 01-

8. Simply and Multiply Connected Regions. By a simply connected
region i8 meant a region such that no closed curve drawn in the
region contains in its interior a boundary point of the region. All
other regions are called multiply connected.

Thus a square or an ellipse is simply connected ; more generally,
the interior of any simple closed curve, together with the boundary,
forms a simply connected region. It is not necessary that the
vegion be finite. The whole plane, or a half-plane, or the region
. bounded by two rays which emanate from a point, or the (z, y)-plane
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exclusive of the positive axis of z, —all these are examples of simply
connected regions.

A circular ring is an example of a multiply connected region.
Consider a region 8 lying inside a curve C, but outside each of the
carves Oy, .++, C,. If cuts be made along lines joining the inner
boundaries with the outer houndary, the new
region, 8', will be simply connected. It is clear
that n such cuts suffice. 'These may be drawn
in a variety of ways. Thus the curves Cy, -+, C,
could be connected in series, and one of them
connected also with C. But it can be shown
that, no matter how the cuts be drawn, their number will always be
the same, namely, n. Such a region is called doubly (n = 1) or triply
(n=2) or (n 4 1)-tuply connected.

A simply connected region cannot have a boundary that consists
of more than a single piece. But not all regions whose boundary
consists of a single piece are simply connected. Thus the exterior
of a circle is multiply connected. It is said to be doubly connected,
since a single cut, as the ray which consists in a radius produced,
would yield a simply connected region. Again, the whole plane
with the exception of a single point is a doubly connected region.

A simply connected region can also be characterized by the fact
that any closed curve drawn in the region can be deformed continu-
ously (like a flezible elastic string) to an interior point of the region
—more properly, until it lies wholly within an arbitrarily small
neighborhood of the point — without ever coming into collision with
the boundary of the region.

Space of Three Dimensions. The ideas and definitions just set
forth admit a two-fold generalization to space of three dimensions.
Consider the space V between two concentric apheres. In this shell
a surface can be drawn (namely, a third concentric sphere) which
contains a part of the boundary of ¥ initsinterior. Thus we should
be led to consider ¥ as multiply connected. But a closed curve
drawn in ¥ can be deformed continuously to an interior point of ¥
—+t.e. until it lies wholly within an arbitrarily small neighborhood
of the point — without ever touching the boundary of V. For this
reason it is natural to regard ¥ as simply connected. We can meet
both situations by saying that V is linearly simply connected, but is
smultiply connected with respect to surfaces.

The space (either interior or exterior) bounded by an anchor rmg
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13

is multiply connected in both senses. If a spaoce is linearly multiply
connected, it is obviously multiply connected with respect to sur-
faces, For, if an arbitrazily slender tube lying in the region could
be drawn together continuously to an interior point of the region
without colliding with the boundary, the same would be true of a
simple closed curve lying within such a tube.

The interior of an anchor ring can be rendered linearly simply
oonnected by introducing a diaphragm, as for example the eut made
by a half-plane through the axis. It is not easy to prove that this
is true of all the spaces bounded by a finite number of curves and*
surfaces such as are most familiar to us. So in the following we
shall restriet ourselves to spaces that are known to have this prop-
erty. If n diaphragms are needed to render a given space linearly
simply connected, we shall say that the original space was linearly
(n 4 1)tuply connected. Thus the interior of an anchor ring is line-
arly doubly connected.

(=¥
7. The Integral | Pdx + Qdy.
@
Turorem 1. Let P and Q be continuous, together with 0P/dy and
0Q/0x, throughout a region S of the plane. If the integral

(=, 9)
® [Paataas
(s, ) N
extended along an arbitrary curve drawn in 8, has the same value for
all such curves, then
@ oP _0Q

oy oz
at every point of 8.

More generally, the theorem is true if the points (a, b) and (z, y), and
the curve joining them, are resiricted to lying in a square, the length of
whose sides does not exceed a certain positive constant, k, which howevey
may be arbitrarily small, and whose centre may be any point of 8.

Let (2, v;) be any interior point of S, which we now hold fast
and sarround by a square §,; lying wholly in §. Let C be any
simple closed curve lying in S, and let (@, b) and (a', d) be two
points of C, dividing O into the arcs C, and C,. Since by hypothesis

J}m+0@=J¥p+Qm
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each integral being taken from (a, b) to (@', b'), it is seen that

Hence by Theorem 2 of § 5 the relation (2) holds throughout 8, and
therefore, in particular, at (;, y1) *. But the latter point was any
interior point of 8. Thus the proposition is proved in all cases.

TaeorEM 2. Let P and Q be continuous, together with 0P/dy and
2Q/0w, throughout the interior of a region S of the plane, and let

oP_02Q,
oy Oz

If 8 is simply connected, the integral
@)

Pdz+ Qdy

(a,d)

has the same value for all paths joining (a, b) with (x, y), and thus is a
singlevalued function v of (z, y). The derivatives of u exist and have
the values o

—=P, P = Q.

Consider two paths, C; and C,, drawn in 8 from (a, b) to (x, ¥).
If they meet only at their extremities, they form together a simple
closed curve, C, and the integral extended along C has the value 0
by Theorem 1 of §5. If, however, they meet in other
points, a third curve, Cy, can be drawn in § from (a, b)
to (z, ¥) meeting each of the curves C, and C; only in its G
extremities, or at most in a finite number of points. The
value of the integral for Cy will be the same as for C, or
(%, and hence these latter values will be equal.

It is seen, then, that the integral defines a single-valued function,
u, throughout §. To differentiate u, let (,, y,) be an arbitrary
interior point of S. Hold y fast and give fo x an increment, Az,
The corresponding increment in « has the value

Fra. 55

* Weo are using here a slight generalization of Theorem 2, which consists in
restricting the regions ¥ to being simply connected. The proof holds good for
this more general cage. At the time the theorem was stated, simply connected
regions had not been introduced.
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ooy, 2) -

8. The Integral | Pdr + Qdy+ Rda.

i, b ¢)

Teeosem 1. Let P, Q, R, together with the derivatives which enter
below, be continuous throughout a linearly simply connected region V of
space. In order that the value of the integral

@ 9,9
Pdz 4+ Qdy 4+ Rdx

(a,b, ¢)

be the same for all paths joining (a, b, c) and (=, y, z), and lying i V,
it is necessary and sufficient that

O @_oR  R_OP  2P_0Q
0z oy’ or 22’ oy oz
When these latter conditions are fulfilled, the function w defined by
the integral admits derivatives, which are given by the equations :

ou ou
@ hep 2

The proof of the equations (2) is given exactly as in the two-
dimensional case, § 7. Moreover, that equations (1) form a neces-
sary condition can be shown by means of the results of §7, one
variable at a time (@ or y or 2) being held fast. That these equa-
tions also represent a sufficient condition will be proved in § 10 by
means of Stokes’s Theorem. It is, however, possible to give an
elementary proof without the aid of Stokes’s Theorem ; cf. the
author’s Funktionentheorie, Vol. 1, Chap. 4, § 8, the method there. sei
forth admitting immediate extension to space of n-dimensions, or to
the integral

=@, —=R.

@)
Py dz) 4 Pydzy 4 -+« + P, dz,.

®
Conditions (1) now take the form:

0P, oP,
Ef=-a—-;’ kl=1,2,c,m; kel
For (2) we have
2
—!-EP” kal, 2, eeey Rl

oz,
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EXERCISE '

Discuss the theorem of the text for the case of a region ¥ which
can be rendered linearly simply connected by the introduction of a
finite number of diaphragms, like the cuts of the two-dimensional
case.

TreoreM 2. Let P, Q, R be two functions which, together with

the derivatives that enter below, are continuous throughout a linearly
simply connected region V of space. In order that

JPd:v+ Qdy + Rdz =90,

where C is any stmple closed curve lying wholly within V, it is necessary
and sufficient that

‘B_2Q_ or_2R_, Q_opr_
\ or

dy oz oz odx ox dy

The proof of this theorem is also given in § 10.

9. Green’s Theorem in Three Dimensions. Let P be a function
of (2, ¥, z), continuous, together with ¢P/dz, within and on the
boundary of a region V. Form the triple integral

e

It can be evaluated by means of the iterated integral, Chap. IV,

§2:
£z,
fff?de=ffdsfi£dz
oz 0z
j 4 8 f
- f f P2, 3, Z)dS — f f Pz, y, Z)dS,
8 8

where § denotes the projection of ¥ on the (z, y)-plane.
These latter integrals can be expressed in terms of surface inte-
grals taken over the two nappes* of the boundary of ¥,

* These nappes can be converiently visualized as follows. Think of V as an
opaque solid, and rays of light descending parallel to the axis of z. The part
of the boundary illumined will be the upper nappe ; the dark part of the boun-
dary, the lower nappe. Moreover, § is the shadow cast by this solid on the

(2, ¥)-plane.
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the upper nappe 2, 2=2,=¢:(%¥);
the lower nappe 3, 2= Zy=¢y(®, ).
Let y denote the angle which the

outer normal to the surface ¥ of ¥ makes
with the positive axis of z.. Then

[fP(w,y, Zl)dS=£fP0087d2,
.[fP(z,y, Zo)dS=—v£chos~,:d2.

Fie. 56 Thus the difference of the two double

integrals is seen to have the value of the

surface integral of P cosy taken over the entire surface 3, and so we
have the result :

@ fJ “—dV—fchOSydE.
)

Similar formulas could bave been obtained if we had started with
partial derivatives with respect to 2 or y, the region ¥ being now
projected on the (y, 2)-plane or the (2, z)-plane. The results in all
three cases can be collected as follows:

fJ ———dV—./:[AcosadS;
@) ff —-dV—fchoaﬁdS;
fff%—gdl’:lj;chosde,

where we have replaced the letter 3, as referring to the bounding
surface, by the letter 8.

If we had used the inner normal, the sign of each nghffhand gide
would have been reversed.

On adding the three equations (2) together, we get:
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L fff LB ao)dV

= ff(A cosa 4+ Beos B+ Ucosy)dS (outer normal)
8

= — f (dcosa+ Beos 84 Ccosvy)dS (inner normal).

The theorem embodied in this equation (in either form) is of
fundamental importance, and we shall point out presently a number
of its applications. It will be shown in Chap. XIII that each side
of the equation is invariant of any rigid motion of the axes, or of
any transformation to other Cartesian axes, provided merely that a
right-handed system does not go over into a left-handed system.

In the proofs given or indicated above it is tacitly assumed that
the surface of ¥ is cut by a parallel to the axis in question at most
in two points or a single line-segment. It is sufficient for the needs
of practice to restrict ourselves to such regions ¥ as can be cut up
into a finite number of regions ¥}, Vg, ---, for each of which this is
true. On writing down equations (2) or L. for each of these regions
and adding, the corresponding equation for V results.

These theorems are known in the literature as G'reen’s Theorem or
Gauss’s Theorem; cf. § 4, end.

EXERCISES
1. Show that the integral

' f (wcos @ 4 y cos 8,4 z cos y) dS,

where a, B8, y refer to the outer normal, is equal to three times the
volume of the region.

v B_.ua—” C= ov

2. Setting A=ua, o -u-a—z,

show that
% au,a'v 8u8v ou dv
fff"(%ﬁ"'aya dV+fJ/ 8m8m 2y oy aw:)‘w
=—ffu5,-‘ds,
5

where dv/@n is the directional derivative of v along the inner normal
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. 8’u &u , P
8. Betting AM = 7 W+W’

show that

fff(uAv—vAu)dV=—ff u——v ) :

where n refers to the inner mormal. This equation is properly
known as Gireen’s Theorem ; cf. § 4.

4. Prove that
82u 0%y 32u
fffaw’ o de——ff
5. If u is a solution of Laplace’s eq,ua.txon,

Pu | »
gt azz =9,

I

. 6. If u is a solution of Lapla.ce 8 equation, show that

SJSGT @)+ @ Jor= [ [z

7. If u 3 const. is a solution of Laplace’s equation, show that

ff 248 < 0.

8. Let A, B, C be three functlons which, together with the deriva-
tives that enter below, are continuous throughout the interior of a
region V¥’ of space. Let V be any region contained withic ¥7; let
8 refer to the boundary of V, and let a, 8, y be the direction angles
of the inner normal of 8. In order that

ff(Acosa+Bcos,e+ Ccosy)dS = 0,

it is necessary and sufficient that

show that

MU, +a°'o

Prove this proposition.
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10. Stokes's Theorem. Let P, Q, and B be three functiops. of
(%, y, %) which, together with their first partial derivatives, are con-
tinuous throughout a region ¥ of space, and let § be a surface lying
in ¥ and bounded by the curve C. Let «, 8, y be the direction

_angles of the normal to 8, chosen in a suitable sense. Then Stokes’s
Theorem asserts the truth of the equation:

[ (s (3
=J}m+Q@+Ru

where the line integral is extended over C in a sense dependent on
the choice of sense for the normal to S.
The theorem is not true in general for unilateral surfaces (cf. infra),
*but it holds for all two-sided surfaces. We begin by proving it for
a restricted case, and are able then with ease to pass to the general
cage.

A Restricted Case. Let 8 be given by the equation
@) 2=uw(z, y),

where o, together with its first derivatives, is continuous within
and on the boundary of a region §’ of the (#,y)-plane, and where
8 lies within the region V. It is furthermore assumed that §’ is
the kind of region considered in § 4, to which Green’s Theorem is

applicable.
Consider the integral
(2) de:c+ Qdy + Rdz,

taken in that sense along C which corresponds to the positive sense
of description of the boundary T of 8’. This integral can be ex-

pressed by a line integral over I' as follows:
v

®) J (P+ R do+(@+ Ray)dy.

For, the value of dz anywhere on & is
4z = ayde + wedy,
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and along C, dz and dy are the same as along I'.*
Let  $(zmy)=Plz, y, o (%, W]+ B[z y, 0 (@, ¥)] w (2, ¥),
L@ =@z, 9, o(x,y)] + B[z, y, (%, y)] m(z, ¥)-
Then (8) becomes

(4) rfasdz+ndy.

This integral can be written in the form (§ 4, C):

® ff -

The integrand of the last integral is seen to have the value:

(6) %%—??—Ql — Py +(Qs — B + (B, — Pj) oy,

where the subscripts against the letters P, @, R indicate derivatives )
taken on the hypothesis that (z, y, 2) are the independent variables.

Let the positive gense of the normal to 8 be defined as that for
which the direction angle y is acute. Then

cosa=—w /A, cosfB=-—w/A, cosy=1/A, A=V14 o]+ o
Hence the integral (5) can, by the aid of (6), be written in the form

() ff{(Ql—Pz)“l'(Rz—Qa)Acosa+(P,—Rl)AcosB}dS'.

# A fuller explanation of this point is as follows. Let C be given in the para-
metric form :

o: z=f(A), vy=¢(\) z=y(), 0SAs1
Then the integral (1) becomes

Gf(Pz' + Qy' + Rz a
But from (1)

2 = w2 4 way.
Hence this integral has the value

1
5{ {(P+ Ru) @’ +(Q + Ruws) ¥} AN,

On the other hand, the curve I is represented by the equations
r: z=r()\), y=o(\), 0sxs1
Hence the last integral {s the same as the integral (8).
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This integral has the same value as the surface integral, taken
over §:

0 [ 5Eyes ( Eoero{B-EJosa

But this is precisely the integral that stands on the left of
Equation I., and hence the theorem is proved for this case. It is
to be observed that the positive sense of C, the inner normal to ¢
regarded as the bounding curve of 8, and the positive normal of 8
are so oriented to each other as the positive axes of #, y, and 2
respectively.

An Invariant Property. It will be shown in Chap. XIII that, if
the eoordinates are transformed to any new system of Cartesian axes,
provided merely that a right-banded system does not go into a left-
handed system, the integrands of both the line integral and the sur-
face integral in I. will preserve their form. Thus

PRy QU pE_piy oW, pE,
and similarly, the integrand of the tra.nsformed surface integral
will be *

(aR' 3?) o +(6P' _ Zf ) cos B' + (aag: %5:) cosy'.

oy’ o7
But Equation I. is invariant even of a reflection, as 2'=—3,
if B'=— R; for then y'= = — y and the sense of C' is reversed.

Suppose now that we have an arbitrary bounded surface, 8. Then
we can cut it up into a finite number of pieces, §;, 8, +--,. each of
which, referred to a system of Cartesian axes properly chosen, will
come under the case just treated. Hence Stokes’s theorem will hold
for such a piece, no matter how the axes are chosen, and so0 we may
refer all the pieces to the same axes.

Write down, then, Stokes’s theorem for each of the pieces 8,, S,, --+,
and add the results together. For the kind of surfaces we most
readily think of, like a piece of a sphere or a paraboloid, we shall be
integrating along each of the cuts once in one direction and once in
the opposite direction. So these contributions to the sum on the

# These facts can, however, be proved here directly by the student, by merely
writing down the most general equations which represent such a transformation
(Analytic Geometry, p. 692 and p. 504), and then computing the original inte-
grands in terms of the new variables.
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right-hand side will annul one another, and we shall have remaining
merely the line integral over the complete boundary of
S, taken in the proper sense.

This sense will depend on which normal to § we have
chosen as positive, Having made this choice at a
P 57 single point, we can determine it at all other points by
the method of continuity. Think of the surface as a
material surface, and think of a thumb tack as placed against it, the
shaft pointing in the right direction at a single point. Allow the
thumb tack to slide about on the surface. Then the proper sense for
the normal will be uniquely determined at all other points. Such a

surface is called bi-lateral, as having two sides.

Unilateral Surfaces. But there are surfaces which do not have this
property ; as was first shown by Mobius., Take a rectangular strip
of paper and bring the ends together, allowing 4 and B to fall, not
on C and .D, but on D and C respectively.
Then the thumb tack can be slid on the BL JD
surface, —say, along the long central 4 Fra. 58 ¢
line, -— 80 as to come back to the starting
point reversed in sense. This makes trouble for the direction angles
@, B, y of the surface integral.

On the other hand, although this surface can readily be cut up-into
pieces Sy, 8;, --- of the kind desired and a positive sense for the
boundary be chosen for one of them, positive senses cannot be as-
signed to the others so that the integrations along the cuts will all
cancel. Try it

Such a surface is called unilateral, for it has but one side. If a
painter agreed to paint only one side of the surface, the Union would
interfere.

The Final Condition in Stokes’s Theorem. We are now in a posi-
tion to complete the statement of Stokes’s Theorem. It is, that the
surface in question be di-lateral. Then the proof goes through as
set forth above.

An Application. Let V be an arbitrary linearly simply connected
region of space, and let C' be any simple closed curve drawn in V.
Then C can be drawn together continuously, always remaining simple
and wholly within ¥, into a curve C lying in a sphere K contained
in V. Let P, @, and R be three functions which, together with the
derivatives that enter below, are continuous throughout the whole
interior of ¥, and let
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R _2Q IP_OR_ bQ _op_
P o z ow oz 0.

Consider the integral
Pdz + Qdy + Rdz.

It8 value will be the same for all intermediate positions of C. For,
two near positions form the complete boundary of a bi-lateral sur-
face contained in ¥, and hence this integral, extended over both
positions of € (but in opposite senses) vanishes by Stokes’s Theorem.

Let M be a diametral plane of the sphere K. Then () can be
deformed continuously toward its projection on M. Again, the
‘value of the integral remains constant. The limiting position of
C, is, however, a closed curve I' (no longer simple, in general) which
lies in M. But for a closed plane curve, simple or not, the integral
vanishes by § 5. Hence the original integral = 0.

Finally, the integral

@y, 5

f Pdz+ Qdy + Rdz

(a, 0, ©)

has the same value for all paths connecting (a, b, ¢) with (%, ¥, 2)

and lying in ¥, and hence it defines a single-valued function, u,in V.
Thus all the theorems of § 8 are established. Stokes’s Theorem

owes its importance, however, chiefly to those cases in physies, in

which the surface integral has a meaning.

11. Flow of Heat. Imagine a slab of copper 2 cm. thick, with
one side packed in melting ice at temperature w = u, == 0°, and the
other side exposed to steam,

u=u, =100°. A flow of heat pe

within the slab results, and if T17] f’kﬁf FYTTYTITYYYS
the above surface temperatures rf“:‘,

are permanently maintained, F1g. 59

the flow will tend toward a

limiting condition, in which the lines of flow are the perpendiculars
to the faces of the slab, and the isothermal surfaces are the planes
parallel to these faces. Moreover, the temperature will fall off
steadily, as a point P traces a line of flow. If x denotes the dis-
tance of P from the surface of temperature u,, and a, the thickness
of the plate, then

®
1) U=y -—(u,—ua)a-
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All this is plaut'sible enough, but how do we know it is so, and
what do we mean by heat, anyway? To answer the second ques-
tion first, we think of heat as an imponderable substance which can
flow freely in a conductor and which can be measured in calories,*
as sugar in pounds. And now the above statements about heat,
including equation (1) above and equation (2) below, are no more
and no less than physical laws,— the facts of nature we take for
granted.

To go on: Consider a plane region 8, of area A, situated in the
slab and parallel to the faces. Let @ be the quantity of heat which
traverses this surface in one second. Then obvicuslyt @ is pro-
portional to 4, to the difference in temperature of the faces, and in-
versely to the thickness of the plate: ’

Q x 4, uy—uy, 1;
a
@) Q=Ku=ty, o

where K is a physical constant, the gpecific conductivity.

Next, let the plane area S be oblique to the faces, making an
angle @ with them. Then the amount of heat, @, which traverses
the surface in one second will obviously be the same as that which
traverses the projection, 4 cos §, of S on a face, or

3 Q—.-K!‘L%lucoso.

The Normul Derivative. Consider the normal drawn to § in the
sense of the flow. Let n be its length. Then it is readily seen

that
ou Ou

4 —==— 008 §,
@ on_ oz 0
For Up = Uprr, Az == An cos §,
Au Au
Anoosb Az’ AUT U T MU —Um

and it remains merely to take the limits.

% By a caloris is meant the guantity of heat required to raise one gramme of
water one degree centigrade (the initial temperature being 15°).

t Each statement {8 a physical law. ¢ Obviously '’ means merely that these
laws are easily accepted.
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From (1) we find :

U =Y,
ox a
On combining this equation with (3) and eliminating du/d» by
means of (4), we obtain:
ou
() @Q=—K = A.

This result embodies all the physical laws that have gone before,
for from it we can deduce both (1) and (3). Moreover, it states
these laws in terms of what is going on in the neighborhood of P,
and not in terms of the temperature at remote points.

If the sense of the normal be reversed, @ will be replaced by its
negative.

12. Continuation. The General Case. Consider now an arbitrary
steady flow. The lines of flow will be curved lines, forming a two-
parameter family of space curves which just fill out the region of
flow. These curves are obtained by considering the family of
isothermal surfaces,

(6) U= up.

In the neighborheod of any point P within the region of flow, the
situation is similar to that set forth in § 11, for the portions of these
surfaces contained in the neighborhood of P look almost like planes,
which are sensibly parallel to one another, and so the lines of flow
are seen to be curves cutting these surfaces orthogonally.

Let S be a surface, open or closed, which lies in the region of
flow. Cut S up into n pieces AS;, ---, AS,, the maximum diameters
of these pieces being small. Then each of the pieces will look like a
small piece of a plane surfacé, and it is physically evident that the
amount of heat which traverses the k-th region in one second will be

approximately _x (?2 AS
o) A8

where the normal derivative is formed at an arbitrary point of that
region. Thus the quantity, @, of heat which traverses the whole
surface 8 in one second will be approximately

3 K(%%) AS,,

=1 k
and the approximation will be closer and closer, the smaller the sub
regions, or
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L ou ou
Q=h‘_r_q§—K(5;>kAS,=—ffK5;da.
8

This whole deduetion has been heuristic. We have dwelt on the
physical pictures and considered what it is reasonable to expect.
To justify in this manner the final result, it would be necessary to
make the physical assumptions sharper, in order to draw mathemati-
cal inferences from them. After all that has been done, the final
result ig the equation

) =—fng—¥—ZdS.

1t is, therefore, simpler, both physically and mathematically, now
that we see what it is reasonable to expect, to begin at this end and
lay down equation (7) as the one physical law.

Unsteady Flow. In the case of an arbitrary flow an instantane-
ous photograph of the lines of flow at one instant would be differ-
ent from that at another instant.* Nevertheless, these lines do not
shift abruptly, and for a short interval of time succeeding an arbi-
srary instant the rate of flow across .§ is given approximately by

M, or AQ ou
Zt‘=‘,/s‘fK5ﬁdSH’

where { approaches 0 with Atz. Thus we have

im29_99_ _ K M.
Awxd Al ot on
-4

Again, the reasoning has been heuristic. We have been shooting
in the target; and now we can bring all the physical assumptions
considered from the beginning into the one

PraysicArL Hyrorrrsis. In the case of an arbitrary flow of heat,
the rate at which heuat traverses a fixed surface S is

®) %?=—ffﬂ'g';:d8.
N 8

% Whereas in the case of a steady flow the lines of flow formed a two-param-
eter family of curves, the lines of flow in the general case correspond to the
individual particles of the substance at an initial instant, and thus form a three-
parameter family.
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We have treated K as constant, and it is so for ordinary substances
and moderate variations in temperature. The Hypothesis includes
the case, however, that K is a continuous function of =z, y, 2, ¢

»

EXERCISE

Show that the lines of flow are given by the simultaneous system
of differential equations:

de _dy _ dz,
7™ o~ ou
ox oy 0z

13. A Kew Heoat Problem. Ifa homogeneous substance be raised
from the constant initial temperature u, to the constant final tem-
perature »,, the quantity of heat required, @, will be proportional to
the rise in temperature and the volume:

Q@ x uy—u, V;
© R=C(u—w)7V,

where C is a physical constant depending on the subatance, the
specific heat per unit of volume.

If, now, an arbitrary homogeneous substance be raised from the
continuous initial temperature w, to the continuous final temperature
u,, the amount of heat required will be

(10) o= [ [ fowm-war,

as is shown by the usual procedure of the integral calculus.
Consider an arbitrary flow of heat. Let the temperature,

u =f(x: Y, 2, t))

be u, when t=1, and w, when ¢t=1#,+ At. The quantity of heat
required to produce this change is given by (10), where for @ we
now write AQ.

On the other hand,

Uy — g = ALS(x, ¥, 7, b, + O AL), 0<o<.

Hence
%%=fff0f.(z,y,z, ty + BAL) dV.
[ 4
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. When At approaches 0, the integral approaches the integral of the
* limiting function, as will be shown under the proof of Leibniz's

Rule. Thus
mAQ_2Q_ ou
EﬂAt at"fffaa:dv'
1 4

We can, however, assemble all our physical hypotheses into the
single one:

Pavsicar Hyrorursis. If in the case of a flow of heat the temper-
ature is a continuous function of x, y, %, t, and if this is true of ou/ot,
too, then the rate at which the heat is accumulating in a given region, V,
18 given by the formula:

an —— f J f % ay,

where the specific heat, C, is either a constant or a conttnuous function
of z, 9,21
From (11) equations (9) and (10) follow at once.

14, The Heat Equation. Consider an arbitrary flow of heat, in
which the temperature, together with the partial derivatives* of
the first two orders, is continuous in z, y, 2, ¢t. TLet V7 be an arbi-
trary sub-region contained in the region of flow. Then the rate at
which the heat in ¥ is increasing is given in two forms, namely, by
equation (8) of § 12 and by (11) of § 13. Hence

12) fffo_dv__fflfa—“ds

where n refers to the inner normal of 8. TFor ordinary substances
and moderate variations in the temperature, K may be assumed
constant.

By Green’s Theorem, § 9, we have:

3211, 6211, 02
f f f T oyt azz) f 'dS
f J' f [C’?-'-‘-—KAu]dV=O.

# Tt is not necessary to extend this requirement to all these derivativen but
the loss in generality i# unimportant.

Hence
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The integrand of this last integral is continuous throughout the
whole region of flow. Hence it must vanish at every point of the

Foglon c—a——KAu—-o

For, if it were, for example, positive at a point P within the region,
it would be positive throughout a certain neighborhood of P. But
the integral of a positive function cannot be zero.

We thus arrive at the differential equation which governs the
flow of heat in the general case:
ou O 0% O .
F i <32:2+3y2 232)’ =0
It is a linear partial differential equation of the second order with
constant coefficients.

(13) K

Steady Flow. We can now define a steady flow as one in which
the temperature at any given point is independent of the time.
From (13) it follows that the temperature, in the case of a steady
flow, will satisfy Laplace’s Equation:
0w | 0w, 0% _

G ot

Conversely, if the temperature satisfies Laplace’s Equation, then
from (13) 6u/ot = 0, and the flow is steady.

A necessary and sufficient condition for a steady flow is the fol-
lowing: if V" be an arbitrary sub-region contained in the region of
flow, then 0Q/¢t = 0 for this region.

The latter property might be taken as the definition of a steady
flow.

(14)

EXERCISE

If K is variable, but continuous, together with its partial deriva-
tives of the first order, show that the heat equation becomes:

du_ 190 ou )
a=ola("a) alFa) ra(v3)
Here, C' may also be variable; it will be continuous,

15. Flow of Electricity in Conductors. The flow of electricity in
a conductor is mathematically identical with the problem of the flow
of heat just discussed. On replacing throughout the word keat by
electricity, and the word temperature by potential, the foregoing treat-
ment applies to the electrical case.
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16. 'Two-Dimensiopal Flow. Consider a solid cylinder of arbi-
trary cross-section, 8, cut off by two planes perpendicular to ita ele-
ments. Let the ends be insulated, and let the remaining surface be
maintained at prescribed temperatures which shall not change with
the time, In particular, the surface temperature shall be a con-
tinuous function, and it shall be constant along each element of the
cylinder.

The limiting flow, i.e. the steady flow which corresponds to the
surface conditions, will be one in which the lines of flow all lie in
planes parallel to the bases; and the lines of flow in one of these
planes projeet on the lines of flow in any other plane.

Thus the flow is completely described by the flow in one of these
planes. Let the (2, y)-axes be chosen in this plane. Then » does
not depend on z; hence 92u/022 == 0, and Laplace’s Equation reduces

to - 2 5
u 2u
(1) '6:2""@'—0.

Equation (8) of § 12 reduces to
0Q_ [ xou
@ P f K on ds,

provided that the altitude of the cylinder is unity.

A necessary and sufficient condition for a steady flow, when K is
constant, is that

Ou
3 —ds=0
@) n
r
for every sub-region, the integral being extended over the complete
boundary in the positive sense. Equation (3) follows from Laplace’s
Equation, and conversely; § 4.

Flow of Electricity. A two-dimensional

flow can be realized as follows. Consider a

piece of tin foil. Let the edge be connected

with a thick piece of copper, and let one pole

of a battery be connected with the copper;

the other, with an interior point of the tin

foil. Then a flow of electricity in the tin

foil will be established, and since the resis-

Fra. 0 tance of the copper is negligible, while that
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of the tin foil is not, the edge of the tin foil
will be at constant potential.*

Again, two segments of the boundary of a
piece of tin foil can be connected with two
thick pieces of copper, and these in turn with
the poles of a battery. A flow of electricity
is thus set up in the tin foil, in which the
other two edges of the latter are lines of flow.

Fra, 61

17. Continuation. The Conjugate Funetion. Equation (3)of § 16
can be written in the equivalent form:

du ou
@ J—ggda:+§5dy_0.
This form suggests that we consider the function

@9 2 P
) w=f— ’{da:+;-zfdy+0,
. oy ox
@b
and that we take the region § as simply connected. This integral
is independent of the path of integration, as follows from (4), or

from the direct application of the test of § 7:
oP _9Q _ 0w 0%

o o’ o i’
the latter condition being fulfilled since « is harmonie,
From (5) we infer the following relations:

. ou_ o
’ oz oy
® ou_ v,
dy oz

A pair of functions, ¥ and », which are continuous, together with
their first partial derivatives, and which satisfy equations (6), are
said to be conjugate. More precisely, v is conjugate to u, and — u is
conjugate to v

# The same flow could be realized by taking the region 8 a8 a non-conducting
surface and covering it on both sides and along the edge with tin foil. On con-
necting the two poles of a battery with points of the tin foil above one another.
the flow in guestion ensues.
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The curves v = const. are seen to cut the curves y = const. orthog.

opally. For, o Pyt
w_ |
o | ow|
oy Loy

Thus the curves of the former family are the lines of flow; for,
they cut the isothermals at right angles.

EXERCISES

1. If w and v are conjugate functions, and if they possess continu-
ous partial derivatives of the second order,* show that both u and »
are harmonic functions,

2. Show that, if » and v are conjugate functions, they satiafy the
differential equations in polar coordinates :
Bu_1dv 1ou__dv,
or ro6 rod  or
8. Prove that Laplace’s Equation becomes, in polar coordinates :

*u ou , 0%u
FERMPAE ik

The equation may be written suggestively in the form:

0 ou P’y
0 [t \ Pu_,
7log r<3 10gr>+ Tz

2

18. Theory of Functions of a Complex Variable. Equations (6)
of § 17 are those which express the condition that a function of a
complex variable:

’ (1) w =f(z))
2=+ ¥, w=1u + vi, i=v-—-1,
should possess a derivative; ¢f. Chap. XX, §11+
@) Dw = f'(z).

Buch a function, f(2), is said to be analytic. Since its real part, u,
satisfies Laplace’s Equation, we have an unlimited source of har-
monic functions. Thus

* As amatter of fact, this condition is satiafled automatically ; but this is not
the place to prove that theorem.
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6)] w=a

is seen }:o have a derivative, and hence
@ w=a— g, v 22y

form a pair of conjugate functions.

EXERCISES

1. Show that any harmonic function which depends on r alone,
but not on 6, is of the form :

u=clogr+c.

2. The isothermals of the function » of Question 1 are concentric
circles. Show that, when the particular values u,, u,, .., u, form
an arithmetic progression, the corresponding values of r form a
geomstric progression.

8. Discuss the conjugate family.

4. Draw the curves u = const. and v = const. in the first quadrant,
corresponding to the functions (4) above.

5. Describe two cases of flow of electricity corresponding to the
results of Question 4, and show precisely how to realize the flow in
each case.

19. Irrotational Flow of an Incompressible Fluid. The domain
of ideas which we have just been considering — the physical pictures
and the mathematical treatment — is closely related to that of a flow
of a fluid in two dimensions. If the density, p, is constant as re-
gards both space and time, the equation of continuity, Chap. XII,
§ 9, reduces to

0X L 0Y _

0)) _3;-’-5_1/—_0'

where X and Y are the components of the velocity at any point along
the axes.

The condition that the flow be érrotational is that a velocity
potential, u, exist:
@) x=% y=2

ox’ oy’

and if the flow is to be steady, these derivatives must be independent
of the time.
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From (1) and (2) it follows that v is harmonic; and conversely
any harmonie function w, independent of ¢, leads through (2) to an
irrotational, steady flow of an impbnderable fluid of constant density.

References. The formal transformations based on Green’s Theo-
rem are treated in much detail in the opening chapter of Watson
and Burbury’s Electricity and Magnetism. The flow of heat is well set
forth in Fourier’s Analytic Theory of Heat, translated by Freeman.
See also the references at the close of Chap. XII and Chap. XX.



CHAPTFER XII

TRANSFORMATION OF MULTIPLE INTEGRALS. EQUATION OF
CONTINUITY

The definit= integral of a function of a single variable was defined
a8 the limit of a sum, and the existence of this limit was based on
the geometric evidence of the area under a curve. It was possible
to extend the method to double integrals; but for triple integrals
geometrie intuition broke down, since a four-dimensional space
would be needed.

By means of the new formulation of the arithmetic definition of
the definite integral, to which we now turn, the above gap relating
to triple integrals is readily filled, and, on the other hand, the
theorems concerning iterated integrals and change of variables
admit simple treatment.

1. A New Definition of the Definite Integral. Let f(z) be a con-
tinuous function of x in the interval

a 4. d b -
aszsb R AN
Fia. 62

Let the axis of = be divided up into segments, each of length 1/2=, by

means of the points 2 = I/2", where I is any whole number, — posi-

tive, negative, or zero. Denote those points which lie actually

within the interval (a, b) by «,, -+, 2,_; (where x,_, < 2,), and let

%y, 2, be the end-points, or the next points outside the interval :
"y fa<a, z,,<bsSx,.

Next, form the sum
q
8, =2 f(#) A, -
ke=p
where z} is any point which lies in the interval 2,, Sz < 2, and
in which f(z) is defined, and
An, =2, — %, ,; p=1lor2; g=v—1lory,

t.e. p may be chosen at pleasure to be either of the numbers 1 or 2;
and g, independently of p, to be either of the numbers v — 1 or .
253
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We prooceed to show that 8, approaches a limit when »n increases
without limit, and we shall define this limit to be the definite integral
of the function f(x) from a to b:

3
¢ lim §, = J 1 (@) de.

@

Let M;, m, be respectively the largest and the smallest values of
the function f(x) in the interval =, , <2z <=, (or in that part of
the interval in which f(z) is defined). Then

m, S f(&) < M,
v—1 y=—-1 r=1
and gm. Az, ggﬂzn Azkggm Az,

And now the proof consists in showing that each of the extreme
sums in the double inequality approaches a limit, and that these
limits are equal. We will restrict ourselves for the present to the
case that f(x) > 0.
Consider the sum

) 3 ¥, Az,

When n increases by 1, each interval (x,_,, z,) is bisected, and the
M’s correaponding to the two halves are at most equal to the former
M,. The modification in statement for the extreme intervals, (zq, #;)
and (,_,, %,), is obvious.

Hence the value of the sum (1), if it changes, decreases. But it

will never be less than
m (b — a),

)
where m is the minimum value of f(z) in the interval (a, b).
It follows, then, that the sum (1) approaches a limit ; Introduction
to the Calculus, p. 391. Denote the value of the latter by 4. Then,
obviously, we also have

-1
lim ) M Az, = A
im 3 31,4,
Next, form the sum .
@ g m; A,
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A.ns;logous considerations show that this sum likewise approaches a
limit,* which we will denote by B:
y—1
lim Z‘g m; AT, = B.
Since

vrl vl

v—l
thAmk - zmkAmk= E(Mk— m,) Az, 2 0,
=2 k2

it follows that 4 > B. We wish to show that only the lower sign
can hold.

To prove this, it is sufficient to show that, when a positive
guantity ¢ has been chosen at pleasure, it is then possible to find ann :
n = N, such that )

3 M, —m<e

for all values of % in question. Obviously, relation (3) will then
hold for all larger values of n. The proof of this theorem depends
on the property of uniform continuity —a subject belonging to a
more advanced stage of analysis; ¢f. for example the author’z
Funktionentheorie, Vol. I, Chap. I, § 4.

Thus the variables (1) and (2) approach one and the same limit,
A, and hence 8, approaches this limit, too, no matter how ] is
chosen in the interval (z,.;, #,). We define this limit as the definite
integral of f(x) and write :

3 4
lim 3/ () Az, = f (@) da.
R0 Jmp b
Corollary 1. LAw or THE MEAN:

f 1) dz = (&) (b — a, a<t<b

Here, £ denotes a point properly chosen within the interval (a, b).

# This result can, however, be deduced immediately from the theorem just
proved. ¥or, let a constant, C, be chosen greater than the greatest value of
J(z) in the interval (a, b). Form the function

F(z) = C—f(=).
Then the sum (1), formed for F'(x), has the value
C(Z, -— %) - g my AZy,.

Since this whole variable approaches a limit, and since ita first term alse
approaches s limit, its last term must likewise, converge.



: Corollary 2. *If ¢ be any intermediate point, a < ¢ < b, then

jf(w)dx=jf(w)d¢+jf(w)d¢-

The proof of each corollary follows immediately from the defini
tion of the integral.

The Most General Law of Sub-Division. Let the points x, =,
+s+, #,, 00W be chosen arbitrarily, subject merely to the conditions
that

BLalE, 1<z, 6,<bS z,, lim Az, =0,

where Az, is the maximum A, for the n-th sub-division. Let

v—1

8= 3 /() An,= 3 1(@l) A2, + e,f (a}) Amy + e (a]) s,
e=p =2

91, eg = 0, 1.
On the other hand,
-1 v-1 »—1 ’
S r@a=3, [r@@=3renan,  sasdsm
v L] R
1 Tp—1
L ]

Hence * S, —ff(a:) de = y}:l [f(=h) —flai)] b=,

af(el) o+ enf(@) a0, — [r@)ae— [ 1@
a Fy—1

When n increases without limit, each term on the right ap.
proaches zero as its limit, and hence S, approaches a limit. The

value of this limit is ,
JECLE

®To be precise, we need here the further definition :
fr@ =,

where c is any point of the interval (g, b).
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It remains merely to remove the restriction that f(x) > 0. If
this condition is not fulfilled, form the function

$(@) = 1@ + C,

where O is 8o chosen that ¢(2) > 0. Since ¢(x) possesses an integral,
it can now be shown without difficulty that f(z) also possesses an
integral ; that Corollaries 1, 2 hold for this integral, and that the
general sum S, approaches this integral as its limit.

2. Continuation. Multiple Integrals. The foregoing definition
has the advantage that it admits immediate extension to multiple
integrals.

Double Integrals. Let S be a finite region of the (z,y)-plane,
whose boundary is made up of a finite number of arcs, each of which
can be represented in at least one of the forms

 J
(1) y= (#(ﬁ), = w(y), 0
where the function standing on the right-hand R
side is continuous throughout a certain in- z
terval, ol
aszsbh or esy=B Fre. 63

Let f(z, ) be a function continuous within and on the boundary of S.
We next divide the plane into equal squares by the lines

z=‘,';;’ y=;)'}—“,

where ¢ and j, independently of each other, range through all integral
values.

Consider (a) those squares which lie wholly within §; and (b)
those squares which contain, in their interior or on their boundary,
at least one boundary point of 8. Let (x,, y,) be an arbitrary point
of § lying within or on the boundary of one of these squares. Form

the sum .

Sn = Zf(xln .'/k) ASH

where AS, denotes the area of the square (and is the same for all
squares, namely 2-™) and the summation must include all the squares
of Class (a) and may include all, some, or none of the squares of
Class (b). Then S, approaches a limit when n becomes infinite. The
value of this limit is defined as the value of the double integral of °
J(=, y) extended over the region S :
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" ums,= [ frevas

To prove the theorem, let M,, m, denote respectively the largest
and the smallest value of f(z, y) in a given square. Form the sums

2+M,, AS,, Z‘m,, AS,,

where the first sum is extended to all the squares of (a) and (3), and
the second, to-the squares of (a) only.

The further development of the proof follows presisely the lines
of the earlier case, § 1; and the two corollaries hold for the present
case, Corollary 1 now taking the form :

f F@, ) dS = f(¢, v) 4,

where (¢, ) is a point of §, and A4 denotes the area of §.

Finally, consider the most general law of sub-divisionof §. Letn
sub-regions be chosen as follows: (¢) each sub-region shall conform
to the general requirements imposed on the original region 8, and
no two sub-regions shall over-lap each other ; moreover, no sub-region
shall lie wholly outside of §; (i) let §' be any region which, to-
gether with its boundary, lies wholly within 8. Then for all values
of n from a definite point on (n = N) the sub-regions shall cover all
points of the region §'; (iit) the longest diameter of any sub-region
corresponding to a given value of n shall approach 0 as its limit
when n becomes infinite.

If, now, (%, y.) be an arbitrary point of the k-th sub-region, and
AS, denote the area of the region, the sum

2 (@5 ¥u) AS,

will approach a limit as n becomes infinite, and the value of this
limit is the double integral :

tim 3 sen, wasi= [ [ 1(s y)as.

Triple Integrals, The treatment here is precisely analogous. We
begin with a finite region V" of space, whose boundary is made up of
a finite number of pieces of surfaces, each piece being capable of

- ropresentation in at least one of the forms

z=¢(x, y), y = y(=, 2), 2= (Y, 2
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where the function on the right-is continuous within and on the
boundary of a suitably chosen region in the (z,y)-plane, or the
(z, #)-plane, or the (y,z)-plane. Let f(z, y,z) be a function continu
ous within and on the boundary of V.

We next divide space into equal cubes by the planes

T= %) y= 2"’:: 2= o’

where ¢, j, k, independently of each other, run through all integral
values. Those cubes which lie wholly within ¥ shall belong to
Class (a) ; those which have at least one boundary point of ¥ in their
interior or on their boundary shall belong to Class (b).

Consider a eube of Class (u) or Class (b), and let (x, ¥;, 2,) be a
point of ¥V which lies within or on the boundary of this cube. Form

the sum
8, = Ef(zm Y zk) AV,

where AV, denotes the volume of a cube (and is the same for all
cubes, namely, 2-3), and the summation is extended to all cubes of
Class (a), and to some, all, or none of the cubes of Class (b). Then
this sum approaches a limit as n becomes infinite. The value of the
limit is defined as the value of the volume integral of f(a, y, 2), ex-
tended throughout ¥:

tin 8, [ [ 64947

The proof is given, as in the earlier case, by means of the sums
2 M, A7, S mAv.

Next, the two corollaries are deduced ; and, finally, it is shown that,
for the most general law of sub-division, the corresponding sum ap-
proaches a limit, and that the value of this limit is the triple
integral :

lim 3161 v 2 8% = [ [ [ 160 m a7

3. Iterated Integrals and the Fundamental Theorem. Let a region
8 of the (x, y)-plane be bounded by two curves:
1) y=20(), ¥ = o(2),
where Q(z), w(®), are both continuous in the interval a Sz <Y,
and w@< 0@ if a<a<b



280 . CALCULUS

.

In case w(a) <Q(a), the segment of the line z=a, for which
() <y < 0(a)

shall also belong to the boundary ; and similarly if () < Q().
Let f(z, y) be continuous within and on the boundary of 8.
By the iterated integral of f(z, y), extended over the region S:

[ H) f dz | f(=, y) dy,

is meant the following. Let z be given any value in the interval
a g < b and then held fast. Let

Y, = u(a), Y, =0(@).

Form the integral
J S(=, y)dy.

The value of this integral depends solely on the value of & which
was chosen; i.e. it is a function of . That the function is continu-
ous is shown in Chap. XIX, § 1.

This function is now integrated over the interval (a, b), and the
result is the iterated integral we set out to define.

Evaluation of the Double Integral. Let the plane be divided into
squares as in § 2, the axis of # being divided at the same time into
segments as in § 1; and let z, be one of the points of division of the
x-axis, which lies within the interval (a, 3).

Consider the squares of Class (a) which have the line z = =z, for
their left-hand boundary. Add to these two rectangles as shown in
the figure ; i.e. the left-hand boundary of the rectangle shall have an
extremity on the boundary of 8. In particular, there may be no
squares for a given k, and then we have just one rectangle, with
the two ends of its left-hand boundary on the boundary of 8. These
squares and rectangles shall be taken as the sub-regions for the

double integral
f f 7(z, %) 48,
8

the point at which f(z,y) is to be formed being defined as
follows. "
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Consider the square or rectangle whose horizontal sides lie in the
iines

y=14, Y=Y ]
Form the integral
141
JECY LY O,
1
By the Law of the Mean its value is
Wirr ~ Y. (@er Y1) % <Y < Yo

The point of this square or rectangle at which f(z, y) is to be formed

shall be (z,, y}).
The sum whose limit is the double integral can then be written in

the form

@) > f(@, ¥) A8y,

where, for each %, 7 is to run through the values corresponding to
the squares and rectangles which abut from the right on the line
z =2, ; and then these sums are to be added for k = 1, 2, ete.
On the other hand, consider the value of one of the above sums
for a given k. Since
. ASy = AT, (Y11 — Y1),

we have
L]

Zf(‘”k, A8, = Az, 2‘ ff(“'h y)dy = Az, | f(x, y)dy

where Y, = o(x,), Y =0(=).

Hence the total sum for all the squares and rectangles is
Y,

3) >, Az, f f (@, 9) dy.
k
Yo
The limit of this sum is the iterated integral (1) above.

We are now in a position to prove the equality of the double in-
tegral and the iterated integral:

S f 1@, y)dS = f dz f 1@ ).
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The sums (2) and (3) are equal for all values of n. As n becomes
infinite, the sum (2) approaches the double integral, the sum (3) the
iterated integral, and the proof is complete.

The boundary of such a region § as that of §2 may be cut by a
parallel to the axis of y in four or more points. It is sufficient, how-
ever, for the needs of practice to restrict ourselves to such regions §
as can be cut up into a finite number of regious, §,, S;, -+, each of
which is of the type assumed in this paragraph. For any such
region 8, the double integral can be expressed as the sum of the
iterated integrals taken over the regions §,, 8,, ...

The result here established is the Fundamental Theorem of the
Integral Caleulus, as stated in Chap. III, § 4. The first proof given
in that earlier chapter, § 3, was based on geometric intuition. The
second proof, § 17, was arithmetic, and it set forth the leading ideas
of the argument, but it did not profess to carry through all the
details. The present proof supplements the second one and leaves
nothing to be desired in point of rigor. If the new definition of the
definite integral, as given in §§1, 2, is once adopted, this proof is
aven simpler than the former proof.

Triple Integrals. The treatment admits of immediate extension

to triple integrals, and thus we have a proof of the Fundamental
Theorem in this case, namely, that (Chap. IV, § 2)

S J f@ v 9av= | [as j}(x,y,zm,

where 8 is the region of the (x, y)-plane whose points are the pro-
jections of the points of ¥, and the region V7 is bounded by the
surfaces *

Bl

ZO B m(z, y), Z = ﬂ(ﬂ!, y)'

EXERCISE
Extend the treatment to a quadruple integral:

fff Sz, 9, 2, 0)dR,

stating arithmetically the meaning of the geometric anatogies.

# There is here a certain further restriction on V, which is not embarrassing
in practioe, since the projection S of ¥ on the (%, y)-plane must now conform
to the restrictions imposed on Sin § 2,
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4. Transformation of the Double Integral. Let the region S of
§ 2 be transformed on a region & of the (4, v)-plane by means of the
equations :

u=g(z,y) %= G(u, v)
@ {v = h(z, y) or {y = H(u, v)
p/ v

#e)

(%),
N—e——

the transformation being required to be one-to-one and continuous.
Moreover, besides the existence and continuity of the first derivatives
of g and k we require that the Jacobian

Fic. 65

ou Ou
. _| 02 Oy | _ 9(u,v)
Tl | T
ox dy
be different from zero at all points of §. The functions G, H will
then also have continuous derivatives of the first order through-
out &, and their Jacobian will hikewise be different from zero at
every point of &. For, J =1/, where

_ (=),

- o (u, v)
Consider the double integral

@ S [renas.

Into what does this go when the transformation (1) is performed ?
Surely not, in general. into

Lé"/‘F(u, v)d®,

where S(=, ) = F(u, v).
For, the latter integral is

E_If 2 F(u,, v,)A®,.
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Now, & smaall region: in @&, ~ for example, a minute square,--- goss
over by (1) into a small region of 8, whose shape is in general dis.
torted, and whose area is not an equivalent infinitesimal, —as is
shown by the simple example:

u=2z z=}u
V=9 Y=
Here, AB =2AS8.

We can get some light, however, on what to expect by taking A®
as a small square, bounded by the lines

U = Uy, u = ¥y + Au, v = v, v =, + Av.

These lines go over in general into curved lines in the (x, y)-plane,
and thus we have a curvilinear quadrilateral which, when the square
is small, will ook much like a parallelogram.

We can approximate to the area of the latter as follows. Recall
the formula for the area of a triangle whose vertices are at (ay, %),

{®1; 1), (23, ¥3). Aside from sign, it is
Y 1
o oy 1)
o ¥ 1
The area of a parallelogram with three of its vertices in these three
points will be twice as great.
Let (20, ) correspond to (uy, ¥);
(%1, 1) = (0 + A2, Yo + A,Y) correspond to (uy + Au, v);
(s, ¥2) = (%o + A,, Yo + A,y) correspond to (up, % + Av).

‘We have, then, as the area 88 of the parallelogram, three of whose
vertices lie at three of the corners of the curvilinear quadrilateral :

A A
% w1 la w1 |
W=|zg+A,2 Y+Ay 1l|=|laz Ay 0= Az Ay AuAv

Zo+A,2 w+Ay 1] [Az Ay 0 0 Ay

Since A& = AuAv, it is clear that
Az Ayl %= oy
lim-§§= lim Au  Au | _ ou oOu o, ¥) 2
A® guyplAp Ay| |0z O
Av  Av v ov
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Now, it seems highly plausible geometrically that the area 38-of
the parallelogram and the area AS of the curvilinear quadrilateral
are equivalent infinitesimals *; i.e. that

. 38
lim = =1,
im A5
Hence follows:
AS o(u, v)’

or
AS = JAG + {AS,

where { is an infinitesimal.
We are now in a position to answer the question proposed at the
start: What does the double integral

f J(=, ¥)dS

become when referred to the transformed region &? Divide the
(u, v)-plane into small squares, as in § 2. To the k-th square in &,
whose area shall be denoted by A&,, corresponds a curvilinear quad-
rilateral in 8, whose area shall be denoted by AS,. If, now, (z,, ¥,)
be any point of the latter region, and (u,,v,) the corresponding
point of the former, then

AS, = J, A8, + [, AS,,
where J, denotes the value of J at (u,, v,). Hence
3 zf(a’k: Yo A8, = EF(“M )T A, + {,A8,].

Let n become infinite. The limit of the left-hand side of (3) is
the double integral (2). To the limit of the sum on the right we
may apply Dubame)’s Theorem, setting

oy = F(uy, v,) J, A8, Bi. = F(u,, v)[J, A8, + CkA@k] 5

then limBe—tim St b 1.
M0 a,, =0 k

* This {s, indeed, a fact ; but a direct proof, based on infinitesimals, cannos
easily be given, and so we agree (a) to accept the geometric evidence in all ite
suggestiveness as making reasonable the true result ; (b) to make our proof de-
pend on other and simpler analytic methods, cf. § 5. — Throughout this paragraph -
J. Ji, and the exPressions for 3§ in terms of determinants should be replaced
sy their numerical values.
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anoa this limit of this sum is the same as

lim 3 F(u,, ,)J,A8, = f f F(u, v) Jd&.
]

‘We have, then, the final result, that

@) fff(a:, ¥)d8 =ff1i'(u, )| J (u, v)| d@.
5 &

This result is true; but the proof is ineomplete, in that we have
not shown that the hypotheses of Duhamel’s Theorem are fulfilled.
We have adduced geometrical evidence which makes highly plausible
the correctness of these hypotheses; but that is not mathematical
proof. In the next paragraph we will give a proof.

5. Continuation. Proof by Line Integrals. It is possible to ob-

tain an expression for the area of the region § by means of the
theorems of Chap. XI, §4:

@) f f~ 48 =— [pdz

) f i?f_.@ dS:-Jde-}-Qdy.

If in (1) we set P =y, the equation yields as the area, 4, of §:

3) A.—__Jyda:.

Ifin (2) weset P=y, @Q=—x, we have
1 ]
@ =~ [ydz—~ady

Let the boundary, C, be represented in parametric form by the
equations :

®) z=0(), y=¥3), OSAsL
Then (3) gives '
(6) A-—Jyg—fd)«

Consider what this integral becomes when we make the trans-
formation (1) of § 4, First, the boundary O of § goes over into the

y
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beundary € of &, whose analytie representation is obtained by sub-
stituting the values of # and y from (5) in the first pair of equations
(1) of §4. Let the result be written in the form

) v=¢() v=y¢ (),
where $(0) =gi®(\), ¥(N)}, ¥ =R{®Q), ¥ W)
Thus in equation (6) we have:

dz _
y-.—..-H(u,'u), d)t 7 ¢( )+'—'l’('\)r
1 1
dx G oG
—J‘yd—)‘d/\=—'/‘3[37¢ (A)+a—v¢(k>]d>~»
or
@ . A= :FJH——dr v+ B2 a,

where the upper sign Lolds when € is described in the positive
senge; otherwise, the lower.
This last integral can be transformed as follows. Write equation

(2) for the region &:

8) ff ”’ 3’3 & = f‘.Bdu+de,

and set B = H%(—; 0= H%—q

oB_00__0GOoH 0G0H_0(G H)_ 70, 4
Then v Ou ou dv Ovou  0(uv) @ ©)-

Hence, s . .
G _ (s, 32
&
or
9) A=-.if J(u, v) d®.
e

Since A4 is necessarily posifive, we see that a transformation (1),
§ 4 has a positive Jacobian when a positive description of C leads
to a positive description of @ ; otherwise, a negative Jacobian.
Stated as a theorem the result is as follows:'
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TPamouxs. The area A of the region 8 is represented by the doubls
integral of the numerical value of the Jacobian J(u, v), extended over

the region ©, "ff

It is now easy to obtain a rigorous deduction of equation (3), § 4.

e s, [ [0 m10e

A@y
we need only apply the Law of the Mean to this integral, and we

have: A8, =|J(u, v,)|AS,,

where (u,, v,) is a properly chosen point of the k-th sub-region of &.
If, then, we form the function f at the corresponding point (z,, ¥,),

have:
we ® J(xis yi) AS, = F(u,, v,) ‘ I (s )| AS,.

Heoce limJ f(a, y) A8, =lim D F(um, )| J(u, v)|AG,,

or '[fj‘(ae, y)dS =‘/e<fF'(u, v)|J(u, v)|dS, q. e. d.

6. The Iterated Integral. The evaluation of the double integral

@® f F(u, v) J(u, v) d&
&

%Y
? (%, ’0)

by means of the iterated integral is immediate. Its value is

g 0w & o
(2) fduJF(u, v)J(u,v)dy or fdva(u, v) J(u, v) du.

Hence we have a new evaluation of the original double integral:

@) f [re nas= n F(u, )

This last formula admits & new and important interpretation. In
§ 4 we interpreted equations (1): d
@ {“==9(w,y) {w=6‘(u, v)
v = h(z, 3) y=H(u 1)

3( v)
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a8 a transformation of the points (z, y) of 8 mto the points (u, v) of a
mywn & of the (x, v)-plane.

It is, however, possible to put a wholly dxﬂerent interpretation
on these equations. We may regard the point (x, ¥) as fized and the
equations (4) as asstgning to it new coordinates, (%, v). Thus if

x =7 Cco8 ¢, y = rsin ¢,

‘we should most naturally interpret these equations as transforming
the coordinates of the point from Cartesian axes to polar coordinates,

From this point of view, then, we introduce a system of curvilinear
coordinates by means of equations (4), the functions g and & satisfy-
ing all of the conditions imposed at the beginning of §4; and we
arrive at a new iterated integral and the evaluation of the given
double integral contained in (3).

Ezample. Let us apply the result embodied in formula (3) to ob-
taining the iterated integral in polar coordinates. Here,

s oy
or or l " cos8 ¢ sin ¢
J= = . ')',
6:1: oy —rein¢ rcos¢
o

= f fﬂm s = fd¢ J”’ sy,

the familiar formula. We observe that the factor r which presented
itself in the earlier deduction is nothing more or less than the
Jacobian,
EXERCISES

1. A gystem of curvilinear coordinates in the first quadrant is

given by the two families of confocal parabolas:
Y= — 2uz 4w Y2 =2vx + %

Compute the moment of inertia about the origin, of the region §
bounded by two parabolas from each family.

2. Find the centre of gravity of 8, Question 1.

8. The area of a curved surface is given by the integral, Chap. III,

§11: N
A= fSeC‘ydey.
5
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* If the surface is given parametrically, cf. § 8, Formulas (3), (4),
(5) and Chap. VI, § 1, Formulas (9) and (14), then secy =+ D/j,
Show that, on transforming from the Cartesian eoordinates (s,y) to
the curvilinear coordinates (X, u) we have:

A=ffDdAdp..

7. Extension to Triple Integrals. Let the region 7 of §2 be
transformed on a region B of the (u, v, w)-space by means of the
equations

¥ =g( Y %) [ z= G(u, v, w)
1 v="h(z,y,2) y == H(u, v, w)
w= (=, y, 2) 2= L(u, v, w)

where the same conditions of continuity are imposed as in § 4, and
where, moreover, as there, the Jacobian shall be different from zero
at every point of V'

J@ g, 5= 200" o g

o(x, y,2)
0
J(u, v, w)= 6—(%’/_)_4;:;)
t S ]

_ also be different from zero, for J=1/j.
Consider the volume integral

) f f (@ v, 2) dV.

Into what does it go when the tramsformation (1) is performed ?
Our guess from analogy would be that

%) ffff(w,y,Z)dwdyd’-"fJfF(“’”’ w)l%

and this is right.

A first proof by infinitesimals and Dubamel’s Theorem can be
given precisely as in the case of double integrals, § 4. A six-sided
figure is cut from ¥ by the surfaces

U = Uy, V=17 w = Wy,
% = Uy + Au, ' v = v + Av, w = w, + Aw,

Then will

dudv dw,

and this fignre looks very much like an oblique parallelepiped when
Au, Av, Aw ave all small. Its volume, AV, therefore, is seen to differ



TRANSFORMATION OF MULTIPLE INTEGRALS 271

only by an infinitesimal of higher order from the volume 3V of the
corresponding parallelepiped, whose four vertices lie at the points:

(%0 Y05 %), (@ + A2, Yo+ ALY, % + A,2),
(T + 8,2 % +AY %+ 8,2, (%+A.%%+A8 %+ A2
The value of 3V is given by the formula:

Az Ay Az
Az Ay Az An  Au  An
+£8V= Az Ay Az|= Az Ay 4.z Au Av Aw,

A Av  Av
A,z Ay Az N

Aw  Aw  Aw

74
K

8

>

The product AuAvAw represents precisely the volume A® of the
corresponding region of the (u, v, w)-space, and so we have

+1imdY = 0@ 9,2
AB  J(u, v, w)
Hence AV=]J|AB + (A3,

when { is infinitesimal, and so, by Duhamel’s Theorem,

limzf(a'k, Y ) AV, = lim 2 Fu,, v, w)|J (%, v, w,)|AB,

or ff Sz, y, z)dV=fJfF(u,v, w)|J(u, v, w)|dB, q.e.d.

The incompleteness in the proof lies in the fact that we cannot
give a rigorous demonstration that the hypothesis of Duhamel’s
Theorem :

Bi=o,+ Loy, le] <
is fulfilled. The geometric picture makes highly plausible the re-
sult, but we cannot be sure without proof that the geometric picture
we see always represents the facts.

8. COontinuation. Proof by Surface Integrals. The theorems of
Chap. XI, § 9 yield the following expressions for the volume of the
region V. On setting C =z in (2), we have:

1) V=ffchSyd8.
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-Beoondly, in Eqnatmn L of that same paragraph, let 4 =2,
B=y, Cw=z; then

2) V=}ff(sqcosa+ycasﬂ+zcos-y)d&

Let the boundary of V,d.e. the surface S, be represented para-
metrically by the equations:
3) z =2, ), y=¥(Q, ), z2=0Q(, p),
where the functions on the right are continuous, together with their
first derivatives, and not all the Jacobians

) j!.__z(lf_ﬁl Ja _._ﬁ»_l Jz__(J)

5 m)’ 5 )’ T
are zero at any one point; ef. Chap. VI, §1. Let
&) D=Vi+A+i

Then the area of a portion of § is given by the formula, cf. § 6,
Ex. 3:

® 8= f D dx dp,

extended over the corresponding region o of the (A, p)-plane.
Moreover, the direction cosines of the outer normal of S are given
by the formulas

) cos¢==-£~‘, cosﬁ:%, cosy——L’

provided the parameters X, u are suitably chosen.
Thus formula (1) can be written as follows:

o [l

where the integration is to be extended over the whole surface S.
We prooeed to transform this integral to the (u, v, w)-space and
the surface © which is the image of 8. A parametric representation
is obtained for & by substituting in the first set of equations (1), § 7,
for 2, y, # the values given by (3):
u=g{®(, p), ¥(QA, p), BQ, p)f, v = ele.
Lot the result be written in the form

(0) W= ¢(k) F')) V= ‘P(}‘w I")) W= '”(Ar f")°
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The Jasobian which enters in (8) is seen to have the following
value :

oz Jy ou u v dw
N A ~ &laA+Gza)‘+Ga ‘Hlﬁ+ﬂzgx+mb—x
ox Oy | ou oy ow
oz, QM o ow

o ‘3,‘.+G23,.¢.+G’ap, Hla +H29 +Ha o

_2(G. H) 0(v,w) , 3(G, H) d(w, w) (G, H) ¥, v)
B w) ) oo w) A T o 8) 50 )

On substituting this value in (8) and recalling formulas (4}, (5), (6),
a.nd (7), we have:

V= ff( 3('0 w) cosa +L@a(—’——)co ,B'+Lag("’H)7cos ')dé

where «', 8/, y' denote the angles made by the outer normal of &
with the axes of u, v, w respectively, and the + sign must be so
determined as to make the right-hand side positive.

This latter integral can be transformed into a volume integral by
means of Equation I. of Chap. XI, § 9, written for the (u, v, w)-

space :

)
fJf 8!1 8+5w d3 f (A cosa' + Bcos B + € cos y)d®.

Lot %= La—-—-—2 g=r%GH) ¢=7%6 H),

2 (v, 2(w, “) 3(u, v)
ow, 08 96_2(G,H D)
Then ou v ow  o(uvw)
and hence

v=f [ [ fs]

From this point on the analysis is precisely like that of §5 for
double integrals and hence formula (3) of § 7 is established, or:

ff f(z,y,z)dV=fJfF(u,v,w)

T, Y, 2
3w v, w)
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The Berated Integral. This last integral can be evaluated in the
usual way by means of the iterated integral, and hence we have a
new evaluation for the original integral by means of an iterated

integral : .
S y,2)dV= .d@J‘F(u, v, w) | J (u, v, w) | dw,
JJ L)

where & here denotes the projection of the points of 8 on the (u,v).
plane.

As in the case of double integrals, so bere we can give an entirely
new interpretation to equations (1) of § 7, considering them not as
transforming the point (z, ¥, z) into a new point (u, v, w) of space;
but rather as assigning to the point (z, y, 2), which now remains
fixed, new curvilinear coordinates, (u, v, w).

Ezample. Let the Cartesian coordinates (z, y, ) be replaced by
spherical coordinates ; cf. Analytic Geometry, p. 584 :

x == r8in ¢ cos 6, ¥=T8in¢sing, 2 == 7 cOo8 ¢,

where # denotes the longitude and ¢, the co-latitude. Then

J(r, ¢, 0)—3—((:%-;——7-2&!14»

and we have the usual formula :

f 'f (@, 3, 2) AV = f 48 ! F(r, 4, 6) rtsin pdr

= d4> dBfF(r, ¢, §)r2sin pdr.

EXERCISE
1. Obtain the iterated integral in cylindrical eoordinates
Z=1rCco8¢, y=rsin ¢, z2=28:

ffff(z, Y z)dV=j:[delF(r, @, ) rdr,

and explain the double integral.
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9. Application te Hydrodynamics and Elasticity. Consider any
three-dimensional material substance, a region =, of which is changed
in size and shape, and thus comes to occupy a new region, r. For
example, think of the currents of air in the atmosphere. Let 7, be
a sphere 100 ft. in diameter, situated half a mile above the earth’s
surface at the instant of time ¢ =#,; and think of what has become
of this sphere 30 seconds later. Let r denote its new form, quite
different, in all probability, from a sphere. But we assume that no
discontinuity has taken place, so that the points of = are related in
a one-to-one manner and continuously to the points of ,.

Let p denote the density at any point of r, and p;, the density at
the corresponding point of r,. We will assume that both functions
are continuous. In general, p will not be equal to p,. We sghall
presently find, however, a relation between them.

The total mass of air enclosed in » must be precisely the same as
the total masd in r,. Hence we have the equation

oSS f

Let the Cartesian coordinates of any point of = be (a, b, ¢), and the
coordinates of the corresponding point of =, be (aq, by, ). Then
(a, b, ¢) are connected with (ay, by, ¢;) by three equations such as

1), 87

a=g(a, b, ¢ a= G (a, by, &)
by="h(a, b, c) b = H (ay, by, &)
¢ = Il(a, b, c) ¢ = L(ag, by, &)
é(a, b, ¢
Let J(a, b o)= 2(@be)
© (, ’ ) a(ao; bo;co)

The integral on the right of (1), when transformed to the region
Ty, takes on the value:

o . fffeiem fffrren

From (1) and (2) we infer that

. f f f pdry = f f f,,.,dfo,
® f f (o — po) dro = 0.
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The region r-was wholly arbitrary. We can understand, then,
by 7, any sub-region of the original =, and equation (3) will still
bold for this new region. From this we can infer that the infegrand
must vanish at every point of the original ry:

pJ — pg=0. '

For, suppose that this function of (ay, b, ¢) were positive at some
point, 4, of the original ry. Then we could enclose A4 in a new
region, 7, at every point of which pJ — p, would be positive, since
this function is continuous and so cannot abruptly change sign.
But here is a contradiction, for the integral of a positive function is
necessarily positive, and not zero. Similarly, if pJ — p, were nega-
tive at any point of the original r,.

We have thus obtained a relation which holds between p and p, at
every pair of corresponding points, namely :

d(a, b, ¢ '
4 J= where J=_(_.’_'2_.
( ) P Po> a(ao,bo,co)

This is one form of the Eguation of Continuity, — one of the basal
theorems of hydromechanics.

Elasticity. We have taken as our physical picture a gas, de-
formed in an easily imaginable manner. But the same analysis
would obviously apply to a piece of rubber in the tire of an antomo-
bile, or a piece of steel in the drive shaft. Equation (4) holds
equally in all these cases.

10. Flux across a Surface. Considera fluid in motion. If we fix
our attention on a region B within the region in which the flow is
eontinuous, then at any given instant, ¢ = ¢;, each particle of the fluid
is moving with a definite vector velocity, and the totality of these
vectors constitutes what is known as a vector fleld.

We wish to find the rate at which the mass is passing across a
given surface, 3, (open or closed) lying in B. This is known as the
Jlux across =.

A4 Suggestive Special Case. The simplest case is that in which the
finid is of constant density, p, and is frozen, and, moreover, is mov-
ing without rotation, and with pure translation. Here, the vector
velacity of each point is the same as that of every other point, and
does not change with the time. Let this vector be 8; let its length
be ¥V (=|B|); and let its components along the axes be u, v, w.
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Farthermore, let ¥ be a plane surface, of area o, whose normal, R,
has the direction angles «, 8, y.

The amount, AM, of fluid which crosses 3 in At seconds is here
readily visualized. If is the mass of an oblique ¢ylinder, whose base
is = and whose altitude is the projection .
of B At along the normal it : [ 2

+

) AM = p(V cos ¢) o AL
Since
V cos e =u cosa+ vcos B+ wcos y,

we have

ATzlt{=p(ucosuaz+vcosﬁ+wcos~/)a-.
The flux is here constant, and lim -ZJE = %%[ Hence
@ Qg:—[=p(ucosa+vcosﬁ+wcos-y)m

The General Case. Returning now to the general case, consider a
small piece of the region 3, of area Ac. This piece will look almost
like a plane, of approximately the same area, Ao ; and, moreover, the
vector velocities of the particles of the fluid near this piece will all
be nearly equal to one another, so that the vector velocity B of one
particle, taken at random in 3, will represent very closely the vector
velocities of all its neighbors. Hence the rate of flow across Ac is
given approximately by the formula

p(ucosa+ vcosfB+ wcosy) Ac;

the normal to 3 being taken at the same point as the particle in
question.

If we divide the whole region 3 up into » patches, assume an ar-
bitrary point in each patch, denote the area of the patch by Ae,, and
form the sum

® At 2 pi (U, €08 &, + v, cos B, + w, cos y,) Agy,
this sum will represent very closely the quantity AM of the fluid
which has crosssd 3 in the At seconds following the instant ¢ (At also

being assumed small). Hence the average rate of flow across 3 in
the At seconds, or AM/At, will be nearly equal to the sum

“¢) 2 pu (1, CO8 &, + v, co8 B, + W, €08 y,) A, ;
B



o8 ' CALCULUS s

L]

and the approximation will be better, the smaller the patches and the
smaller At are taken. The limit of the above sum,

5) lim 37 p, (u, 08 @, + v, €08 B, + w, c08 y,) Aay,
g ¥

when the largest diameter of any patch approaches O as its limit,
and Af also approaches 0, will be precisely the rate of flow, or fluz,
across 3t

b3

Critique of the Foregoing. 'We have made a succession of positive
statements, without attempting to give any other reason for their
correctness than the physical picture. ¢ Realize the physical situa-
tion and be convinced that these things are so,” is the spirit of the
text. Certainly, this is altogether properly the first step toward
recognizing the reasonableness of the result, (6). But what are the
physical laws we are assuming ? Is the situation like that in which
the area of a curved surface was formulated as an integral :

A=ff88(:yds,
s

the final formula, — the integral itself, — being the simplest physi-
cal axiom to lay down? Or is it rather as it was in the case of
fluid pressure, where physical laws of such simplicity that it seemed
pedantic to state them led to the determination of the pressure:

P=w | (2+c)ydz or P=wff(z+c)d8,
e, 8
a8 8 mathematical theorem ?

The answer is as follows. The physical picture of the flow, which
we have thrown on the screen of our imagination, though highly
suggestive, is not sufficiently refined, in'the absence of further elabo-
ration, to render a mathematical deduction possible. It is precisely
at this point that the infinitesimals of Leibniz, so dear to the heart
of the mathematicians of the eighteenth century and to many a
physicist of today, befuddle the situation, for they seem to go be-
yond the point we have reached above and to deliver a proof of (6),
where our methods recognize their limitationa.

It is, however, an error to attribute to them magical and mysti-
cal powers. They cover with a smoke screen the inherent difficul-
ties; they do not shrmount them.

+
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A proof of (6) by infinitesimals is inconvenient, not for mathe-
matical, but for physical reasons. It is not possible to frame a
aimple statement of physical facts which will yield the double in-
equality of Duhamel’s Theorem, or its equivalent. The student bas,
then, two courses from which to choose. He may say: “ The physi-
cal evidence is already highly convincing, though not of the order
which we regard as ultimate. I prefer to accept the result and to
go on and see what can be gotten out of it.” This is the stand of
a man who respects himself scientifically, but who does not wish,
for the time being, at least, to study further the mathematical-
physical situation.

The other course is to attempt a proof of (6) on the basis of clean-
cut assumptions defining what we mean by a flow of a fluid. The
proof is not a brief one; but the ideas and methods it involves, far
from being artificial and developed for just this one case, are such
as the student will meet again and again both in pure mathematics
and in mathematical physics. For this reason a careful study of
the proof will well reward the effort.

One other word. We have considered a material fluid. We
might equally well think of the substance as heat or electricity.
Even more generally, the results apply to the case of any vector
field (as in the jflux of force across a surface in electricity or magnet-
ism or gravitation). There may be a point function, like the density
p above, given at each point of the field; or such a function may be
absent: p=1.

11. Continuation. Proof of the Formula. Definition of a Flow.
We must first define what we mean by the flow of a fluid. Let R,
be a region contained in the fluid at time ¢ =1¢, Consider an arbi-
trary particle which initially (¢.e. when ¢t =¢;) is at a point (a, b, ¢)
of R, Let (z, y, 2) be the point at which this particle has arrived
at an arbitrary later instant,

t=t Then . R, A
z=fla,b¢1 (a.pic) I
1) y=¢(@ b1
z=y(abef)
where these functions are con-
vinuous. And now the region R, is carried over, in a one-to-one
manner and continuously, into a region R, which changes with the
time, but for a given value of ¢ is altogether definite. In other

Fia. 67
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wonds, equations '(1) can be solved fora, b, ¢:
a=F(zy,21)

@) b=2e(z, 9210
= \I'(m; Y %, t)

where (z, ¥, 2) is any point of the region R which correspouds to the
value of ¢ in question, and the functions F, ®, ¥ are continupus.

Finally, we require that the functions f, ¢, ¢ have continuous first
partial derivatives in all the argumernts, and that the Jacobian be
always positive:

o(z, ¥, 7)

3) 3(a. b, ) > 0 throughout R,

From these conditions it follows that the functions F, ®, ¥ also
have continuous first partial derivatives. Moreover,

9(a, b, c)

4 » 2 7> throughout R.

@ o(x, Y, 2) 8

For, the Jacobian in (4) is the reciprocal of that in (3); e¢f. Chap. V,
§§ 12, 13.

The Problem. We wish to determine the rate at which the fluid
is traversing a given surface, open or closed, which lies in B. More
precisely, if AM denotes the mass of the fluid which crosses this
surface in the interval of time from ¢=1¢; to ¢ ={, + At, then we
wish to find the s

. AM M
. ® mart % G

The Surface 3. Consider a piece, 3, of this surface;, and require

that 3 can be represented in the form

(6) = w(x, .l/);
where o is continugus, together with its first derivatives, throughout
the projection § of = on the (z, y)-plane.

Consider the instant ¢ = ¢, and the succeeding interval

L<tSt+h
At any instant, ¢ = , of this interval, there will be a certain surface
of the particles coincident with %, and these will pass on as ¢ in-
creases, reaching a definite final position when ¢ =¢ + & We will
impose further conditions to make sure that no two members of
this one-parameter. family of surfaces ever have a point in common,
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This can be done by requiring that the tangent to the path of any
partiele which at time ¢{=¢, is on 3, be not tangent to ¥; and,
secondly, by suitably restricting A.

Let us formulate this condition analytically. The components,
u, v, w, of the velocity of any particle along the axes at any instant
are the time derivatives of its coordinates, or

N u=fa, b ¢ t), v = ¢y(a, b, ¢, 1), w = y,(a, b, ¢, t).

These can be taken as the direction components of the tangent to
the path of the particle. The direction components of a normal to
= are

Wy (m; y)) “’2(1:; y)l -1,

For a particle at (z, y, 2) on %, when ¢ = f,, we must then have
8 Uw 4+ Vg —w % 0,

where u, v, w, as given by (7), are formed for that point (a, b, ¢) of
R, which corresponds to the above point (z, y, 2) of 3 at time ¢ = ¢,.

The expression on the left of (8) can be regarded as a function of
the independent variables (z, ¥) in 8, and since it is continuous and
different from zero, it will be either positive throughout 8 or else
negative throughout 8.

The Region ®. We now have the physical picture of a three-
dimensional distribution of the fluid which has passed across the
surface 3 in the interval of time (¢, ¢; 4+ &), and which, at ¢t =¢, + &,
is spread out throughout a region ® of space, bounded in part by 3.
Is this physical picture justified by the hypotheses above laid down?
This is purely a mathematical question, to the treatment of which
we now turn.

It is convenient to represent the points of ® by means of the
following system of curvilinear coordinates. Let the Cartesian
coordinates of a point of § be denoted by (A, ). We thus have a
simple system of curvilinear coordinates on the surface 3, whose
points (z, ¥, z) are represented by the equations

© z=X y=p z=o ).

As the curvilinear coordinates (A, u, r) of a particle in ®, whose
Cartesian coordinates are (z, y, z), we now choose the coordinates A,
g of the point of 3 through which it passed, and the time ¢ = r of its
passage. The expression of z, y, # as functions of A, g, =, acoording
to the above definition, is obtained as follows: (i) the point (a, b, ¢



282 CAILCULUSB

of B, corresponding to (z, v, 2) of ® is given by the equations

A= f(a, b, ¢ 1) a=F[A m o}, p), ]
(10) p=¢(a, b ¢cr1) or b= @A p oA p), 7]’
o, p=y(@dc 1) c=W[A p o p), 7]

(¢5) the values of g, b, ¢ thus obtained are substituted in (1), and ¢ is
got =4, + A:
z= f(a, b, ct,+ k)
(11) y=9¢(ab, ¢ ty+h)
2= y(a,b,c bty +h)
We wish to show that the Jacobian

12) J=2@®99 0
a(A’ B T)

at every point of % when r=1¢, and kA =0; for it then follows from
the implicit function theorem, Chap. V, § 12, that, when % is suitably
restricted, equations (11) define a region ® such that, if (z, y, 2) is
an arbitrary point of R, these eguations admit a unique solution,
(WS 1), where A, u, r are continuous functions of (%, v, 2) in %, and
moreover J will not vanish in %.

To compute J, combine equations (10) and (11), thus obtaining
the following:

z—A= f(a,d,¢c,t; +h)— f(a, b, ¢, 7)
(13) Yy—p=¢(abdcti+h)—¢(a b )
z—w(d, p)=y(@bec t,+h)—y(abd,c )

It is now easy to compute the nine partial derivatives which enter
in the Jacobian (12) for the particular values r =t and h=0. In
computing the six of these derivatives that are taken with respect
to A and p, it is allowable to set r = ¢, and k = 0 before the differen-
tiation. The values of the remaining three, with respect to r, are
also computed with ease, and we have, as the final result:

1 0 _fl(a': bl S tl)
M 0 1 —¢i(a, b, o t)

oA ) |70 =
G (2 o) e ) —di(ay b0ty
=u(a, b ¢ t) ‘”I(A’ w+v(a, b, 6 t) wg (A, p)—w(a b, ¢ 4y).

Bat this is precisely the left-hand side of (8), and hence is nowhere
zero on 3.
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The Determination of AM, We arenow in a position to determine
the mass of the fluid contained in ®. It is:*

(14) M=fprMdydz=fJf %—::’-%,dehdp@r,

where R' denotes the region of the space of the Cartesian coordinates
(M m, 7) which corresponds to ® by the transformation (11).

The volume integral can be evaluated by means of the iterated
integral, and hence

(15) M= jg' f dSJ %

Applying the law of the mean, we have:

t+h

Jraau o= a

Since J(A, u, ) is continuous, the last factor differs uniformly from

oz, vy, 2)

Pa(’\) By T) | =

by a quantity { which is infinitesimal with A. More precisely, the
largest value that |{| has for any point (A, ) in § and for a given
k approaches zero with A.

If, then, finally, we write M as AM and h as At, we have

o3[ [pE e
Hence
g [ feian

But the value of the Jacobian J on 3 has been shown to be

vy + Vg — W
Consequently

(18) aM f p(woy + vy — w) dS.

* Bave possibly us to sign. For a discussion of this question of. below.
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This latier integral can be writben as a surface integral taken over
3, and thus we have the familiar result:

{19) Qg::ffp(ueosa-}-vcosﬂ-f-wcos'y)di,
Z

where a, 8, y are the direction angles of a normal to the surface,

The Signs. In formula (14) there should be a minus sign before
the last integral if J < 0. Moreover, we have not said in (19) which
normal is to be chosen. Nevertheless, (19) is true in all cases, no
matter which normal be chosen, provided we take AM as an algebraic
quantity, considering AM as positive when the direction of flow at
any point of 3 makes an acute angle with the normal at that point,
and negative in the other case.

The Ezcepted Case. It remains to consider the case that
(20) . A=ust+ve—w=0
on X Thls may happen either through the velocity vector being
tangent to 3 or through the velocity vanishing on 3.

Suppose the points of the first kind lie on a curve € and those of
the second k'nd, on a curve C’:

C: A=0; (u v, w)=(0,0,0);
' A=0; u=0v=0,w=0.

It might at first sight appear as if we could consider a portion 3
of = not reaching up to either € or C’ and, applying formula (19) to
iy, allow 3’ to approach = as its limit. Then the surface integral
(19), extended over 3/, would approach the surface integral extended
over X as its limit, and we should have the result we wish to es-
tablish. But there is a fallacy in this reasoning, which consists in
inverting the order in a double limit.

Let AM’ be the quantity of the fluid which flows across 2' in At
seconds and let AM" be the quantity which flows across the re-
mainder of ¥ in that time. Then the limit we wish to ‘determine is

M _ i (AYM' AM") oM' | oM"
— =.._.—+
ot mo\ At At ot ot
If now we let 5' approach 3 as above, it is true that oM'/ot ap-
proaches the limit given by formula (19). But
, -
aaj;{ lm a + lim 61;" .
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and why should this last limit be 0? In other words, why should

tim 94 i(lim M")?

ey Ot  Ot\z'ss
It is this point which requires proof, and the proof can be given by
direct appraisal of AM".

Let the ocurve C' (which may consist of several pieces) be em-
bedded in one or more slender strips, X,. Let O also be embedded
in one or more slender strips, and denote the part of these strips
which lies outside 3, by 3,. Denote the quantity of fluid which
flows across X, and 3, in At seconds by AM; and AM,.

To obtain an appraisal for AM,, let V denote the largest value of
the velocity which any particle, traversing a point P of %, at time
¢t = r intermediate between ¢; and ¢, + A, attains in the interval from
r to ¢; + At. Replace At for convenience by the former notation, k.
Then the particles which travexse the point P in the interval of time
from ¢, to £, + & will lie in a sphere about P, of radius Vh.

Let P sweep out 3, carrying such a sphere with it, and let the
region of space swept out by the sphere be denoted by U;. Then U,
is of the nature of a shell, encasing 3, and of thickness about 2V&.
Its volume will be approzimately 2 VhA,, where A, is the area of X,.
It remains to show, with all rigor, that this volume is less than
2VhB,, where B, is a suitably chosen constant. This proof can be
carried through without difficulty, and is left to the student. Thus

|AM,| < 2VhB,.

An appraisal of AM, can be obtained as follows. Consider a par-
ticle of the fluid which passes a point P of %, at any instant, t =1,
of the interval from ¢, to ¢, + h. Let 8' be the greatest angle which
its path ever makes with the tangent plane at P during the interval
from r to f, + k, and let V' be its greatest velocity in this interval.
Let 8 and V be respectively the maximum values of & and V", as P
sweeps out 3, Then 3, can be so chosen that § will be arbitrarily
small. It is clear that those particles which pass a given point P
of 3; in the interval from ¢, to ¢ 4+ % will lie between two cones
whose axes are in the normal to X at P and whose semi-vertical
angle is 3 » — 8 No particle will depart from P by more than V&,
and each particle will remain in the region R between the above
cones and within a co-axial cylinder of radius Vh. The part of 3
within this cylinder will also lie in R, if A is suitably restricted.
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Noiw, the distancs of the most remote point of R from 3 is obviously
less than 2 Vh tan §, except when P is near the edge of X,; and this
exception can be conveniently removed by extending 3, slightly, to
form a region 3§, of area 4,.

, If, now, we construct a sphere of radius 2VAtand about P as
centre, and allow P to deseribe 3}, carrying its sphere with it, a
region {; of space will thus be swept out, the volume of which is

approximately
4.4;,Vhtans,

and it follows from the evaluation of the volume of U in the earlier
case that the volume of U/; is less than 4 B, Vhtan §, where B, de-
notes a suitably chosen constant. Thus

|AM,| < 4 B,Vh tan 5.

We see, then, that 3;, 3; can be so chosen that AM; /At and
AM, /At remain vumerically as small as one likes for all values A
that are positive and small. Hence dM"/0t does approach 0, and
the proof is complete.

It is possible that the locus A = 0 consists, not of curves C and (",
but of whole two-dimensional regions. The above proof applies,
however, to these cases without modification.

The result, namely, equation (19), is independent of the choice of
the coordinate axes. Hence it holds for any bilateral surface which
ean be cut up into pieces, each of which, when referred to properly
chosen axes, can be represented in the form (6).

12. The Bquation of Continuity. Consider an arbitrary sub-
region, ¥, lying in the substance, the flow of which is defined
above. The quantity of matter, M, in ¥V is given by the integral:

@ M=fffpdv,'

where p is computed, at the instant ¢ in question, for each point
(», y, ) of the region V.

The rate at which M is increasing at this instant will be given,
then, by the equation :

@ %’=fffg’fd"'

p being a function of (z, 3, 7, 1).
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On the other hand, the rate at which M is increasing is the rate
at which matter is flowing into V" from without across the surface,
8, of ¥, and thus is given by § 11 as

'6)) %:ffp(uoosu+vcosﬂ+wcorsy)dS,
-]

where a, 8, y are the direction angles of the inner normal..
By Green’s Theorem, Chap. X1, § 9, L, the right-hand side of (3)
has the value *:

@ -f f [0 B0 S0 g

From these two values of 0M /0t we infer that

® fJ (%200 M+—(B@}dv 0.

Now, the integrand is continuous throughout the whole region of
flow, and the region ¥V is arbitrary. It follows, then, that this func-
tion must vanish identically; cf. § 9 and Chap. X1, § 14 for the rea-
soning here employed :

(6) e QE+M+M+M=O,
A ox oy oz

The result is known as the Eguation of Continuity. It is a neces-
sary and sufficient condition that nowhere in the region of flow is
matter either generated or destroyed; there are no (three-dimen-
sional) sources or sinks,

. EXERCISE
Prove the Equation of Continuity by differentiating equation (4)
of § 9 with respect to the time.

& We now make the further assumption that the functions in (1), § 11 possess
continuous second partial derivatives.



CHAPTER XIII

VECTOR ANALYSIS

1. Veoctors and their Addition. By a vector is meant a directed
line segment, situated anywhere in space. Vectors will usually be
denoted by German letters or by parentheses ; thus a vector angular
velocity may be written (w).

Two vectors, A and B, are defined as equal if they are parallel
and have the same sense, and moreover are of equal length. We

write : A=B

By the absolute value of a vector % is meant its length; it is de-
noted by |%|.

Addition. By the sum of two vectors, ¥ and B, is meant their
geometric sum, or the vector § ob-
tained by the parallelogram law.
We write :

A+8=0¢
F1g. 68 In order that this definition may
apply in all cases, it is necessary to
enlarge the system of vectors above defined by a nul vector, repre-
sented by the symbol 0. It may be thought of as a point, or as a
vector whose terminal point coineides with its initial point; but
this is not to be understood as meaning that it really was included
in the original definition, only we were not shrewd enough to see
it. Itis a new element, added to the original system by a new and
independent definition.

If B is parallel to % and of the same length, but opposite in sense,
we write : -

A+ B=0, or B=—1 -
Moreover, we understand by m%, where m is any number* a

* By number we mean an ordinary real number, positive, negative or gero;
rasional or irrational. .
288
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vector parallel to % and | m |-times as long; its sense being the same
as that of %, or opposite, according as m is positive or negative. If
m=0, then m¥% i8 a null vector:* 0X=0. The notation Am
means m¥, and also

a¥%X+ b8
a+bd means +ba+a+b

Vector addition obeys the commutative and the associative law of
ordinary algebra:

A+ B=B4+9,
A+(B+6)=(A+ B)+G.

Subtraction. By B— % is meant that vector, ¥, which added to %
will give 8: s 8 9. g

A4 2=, =92 & ﬁr
It is easy to see how to obtain % <, 4 Fia. 69
geometrically : Construct ¥ and 8 )
with the same initial point; then 8 — ¥ is the vector whose initial
point is the terminal point of %, and whose terminal point is the
terminal point of 8.

Cartesian Representation of a Vector. Let a system of Cartesian
axes be chosen, and let i, j, t be three unit vectors lying along these
axes. Let % be an arbitrary vector, whose components along the
axes are X. Y, Z. Then evidently

A=Xi+Yi+ ZL

If / 8= X'i+Yi+ 2,
ther A+ B =(X + XNt +(T+ Mi+(Z+ Z2)L
Also: |#|=vXit T2+ 22

A point in space, with the coordinates (z, ¥, 2), may be repre-
sented by the vector
t=2i4+yi4+ 2L

If P, and P,, represented by r; and r,, are any two points in space,
the mid-point of the line segment joining them is given by the
terminal point of

#]t i& true that the symbol 0 is used in this equation in two different senses, —

anve, 58 the number 0, and again as a nyl vector. This double use will not be
found, however, to lead to confusion. .
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where T is drawn from the origin as the initial point.

Let n masses, my, -+, m,, be located anywhere in space, and let the
coordinates of the k-th of these masses be (w, y,, 2,). Then their
centre of gravity is given by the terminal point of the vector

'0) s="atit M+ - +m,r,
my + Mg + <o+ M,
the initial point being taken at the origin.
Equations (1) and (2) merely compress into a single vector equa-
tion what is expressed in ordinary form through three equations.

H

Vectors in Physics. Those physical quantities, like forces and
velocities, which require for their expression, beside their magni-
tude, their direction and sense, can be represented by vectors. We
may mention accelerations, couples, angular velocities and momen-
tum, and the vector moment of a force about a point. The law of
composition is in each case the law of vector addition given above.
But this is not true of all physical quantities that can be repre-
sented by vectors. Thus any displacement of a sphere whose centre
remains fixed is a vector quantity, but the displacement which arises
as the result of two given displacements is not in general the dis-
placement which corresponds to the sum of the vectors representing
the given displacements.

i

EXERCISES
1. Bhow how to construct geometrically the sum of n veetors,
a1+al+ Ve +an’

by means of a skew polygon, the generalization of Fig. 69.

2. If n forces, acting at a point, are represented by the n vectors
&, B, -+, §., show that their resultant is represented by the vector
F=F+8+ - +8,

drawn from the point of application of the forces.
8. If a couple in space is represented by a vector, show that the
resultant M of n couples, M,, -.-, M, is represented by the vector *
M=+ Wy + - + M,

*This question involves a knowledge only of the elementary theory of the
composition and the resolution of couples in space.
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4. Three veotors are said to be complanar * if there is a plane in
space to which they are all parallel. Bhow that, if %, 8, € be three
pon-complanar vectors, any vector, %, can be written in the form

E=IA4+mB+ng,

and that I, m, n are uniquely determined.
5. If A=1f() +ie )+ 1y (),

show that a necessary and sufficient condition that % have a deriva-
tive is that each of the functions f(f), ¢ (f), y(t) have a derivative.
Then,

DA =if'O)+id'() + 1 (0); d¥% = D,%dt.

8. If m is a function of z, and % is a vector which depends on =,
and if each has a derivative, show that m % has a derivative, and that

dna) _dmy . d%
de  d=z ﬁ+mdz

7. If a point P move in any manner in space, its coordinates
being given by the equations

z=r(t), y=3¢(), z=y(),
where f, ¢, ¢ are continuous functions of the time, having continuous
derivatives, and if
=azi+yi42l
show that the vector velocity of P is represented by
. _drx
FTa
8. If f, ¢, y have continuous second derivatives, show that the
vector acceleration of Pis given by
. dr
T

9. Show that the plane determined by the vectors ¢ and ¥ drawn
from P (on the assumption that neither is a nul vector) is the oscu-
lating plane. Thus the vector acceleration always lies in the osou-
lating plane. )

% T'wo vectora are said to be collinear, if there is a line in space to which they
are both parallel.
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»

3. The Scalar Produot. Beside veetor addition (§ 1) there are
two other laws * whereby two given vectors determine a new quan-
tify, —namely, the scalar product and the vector product. The first
of these laws is as follows, Let % and 8 be any two vectors, and
let the angle between them **be ¢. Then the number |%|-|®B |- cos ¢
is defined as their scalar product, and is written S%8:

SUAB=|%|-|B]-cose
or = ABcos ¢, A=[%|, B=|8|.

If one of the vectors % or B is a nul vector, the scalar product is
defined as 0.

Thus the scalar product of two vectors is not a vector at all, but
is an ordinary number. Such numbers were called by Hamilton,
the founder of quaternions, scalars because they can be represented
by points on a scale, or graduated ruler.

The scalar product vanishes (i) when one of the factors vanishes ;
(%) when the given vectors are at right angles with each other.

The scalar product can be interpreted (or, if one will, defined) as
follows. Let each of the given vectors be projected on a line par-
sllel to or coincident with one of them. Then the product of these
projections, each taken with its proper sign, is equal to the scalar
product in question.

The commutative law holds for scalar multiplication (as it is also
called) :

S %38 = §BU.
But the associative law has no meaning, since the definition of
scalar multiplication applies only to two vectors, not toa scalar and
a vector.
The distributive law, on the other hand, is true here:

SU(B + G) = S4B + S uC.

The proof can be given by projecting the vectors along the line of
¥ and observing that
Proj (8 + €)= Proj 8 + Proj &.
On applying the interpretation of the definition mentioned above,
the truth of the theorem becomes apparent.
#The word law is here used in the sense of definition, not theorem.
#s By this is meant the angle formed by two rays which emanate from &

point and have respectively the direction and sense of the given vectors. This
sagle is an unsigned gquantity and is taken between 0° and 180°, both inclusive.
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Cartesian Form of the Scalar Product. Let
A= dii+ Asf+ 4,2,
B=Bi+ Byj+ Byt
Sit=1, 8ii=1, Sn=1,
Sjt=0, Si=0, Sii=0;
and since, moreover, scalar multiplication is distributive, it follows
at once that SUB = A4,B, + A,B, + 4,B;.

The formula follows also from the definition, provided neither %
nor B is a nul vector, since

Since

-A1B1+A2B2+A1Bg_
(%] |8

COB € =

EXERCISES
1. Show that
SN =| A2

2. If each of the vectors % and B has a derivative with respect to
2, show that the scalar product has a derivative, and that

dS a8 da ds8

aoAD _ gd% Sq%3.

dz dz$+ ad::;

8. If o is a unit vector, |a|=1, show that
Saa’ =0, where o =3,
do

4. In the case of motion in a plane we have, on introducing polar

coordinates, t=1ircos ¢ + jrsin ¢,

where 7 and ¢ are functions of the time.

Deduce the usnal formulas for the components of the velocity and
the acceleration along the radius vector (produced) and perpendicu-
lar to it, by considering the scalar products, Sra,, Sray, Sta,, Stag,
where «, and a, denote unit vectors along r and perpendicular to it
respectively, and the dots denote time-derivatives.

2
Ans. 'u,_—..g—:, v‘==r%;—#; a,—--%—r%% , a¢=%%(ﬂ%)-

5. Show that the equation of a plane which (i) goes through a
given point, 4, and (i) is perpendicular to a given vector % can
be written as follows. Let O be a fixed point in space, and let ¢, be
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the vector drawn from O to 4. Y.et P be any point of the plane,
and let ¢ be the vector drawn from O to P. Then

Sﬁ(r— fo)=0.

8. Show that the law of muMiplication of determinants can be
written in the form:

A, A, 4, Al 4, 4 Suw Suw SuE
B, B, B,|-|B B, B|=|S8w S8y S8
G G G ¢ O C SCY BJ¢B¥ S¢ea

3. The Vector Prodvet. Let % and 8 be any two vectors. Con-
struct them with the same initial point, and complete the parallelo-
gramme, of which they form two sides. Then
the vector product of % and B, written V U,
18 defined as a vector drawn at right angles to
the plane of the parallelogramme, of length
equal to the area of the parallelogramme, and
in a sense such that %, 8, and V48 shall al-
ways form a right-handed system, or else
always form a left-banded system. Thus, when a Cartesian system
of coordinates is introduced, we shall always have:

¢y Vit=t, V=i, Vii=1.

If one of the vectors is a nul véctor, or if the vectors are collinear,
the vector product is defined as a nul vector.
The absolute value of the vector product is given as follows:

@) | VAB| = ABsine,

where ¢ is the angle between the vectors.

It is clear that two vectors, % and 8, drawn from the same point,
can be replaced in a great variety of ways by two other vectors,
%' and ¥, lying in the same plane, without altering the value of the
vector product. Thus in the figure

(3 VIB=VUB=V%B= .., or V(&A+mB)B=VaB.
Moreover,
1

@ VAB = V(m %) (%) €

where m ie any number not 0. Hence ¥ T1
one of the factors in a product can be
replaced by a unit vector having the same direction and sense, and

Fia. 70

.t
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the direction and sénse of the other factor will not thereby be
disturbed.

The vector product vanishes (i) when one of the factors vanishes;
(¢9) when the two given vectors are collinear.

The commautative law does not hold ; but we have
®) Va8 =— VB

The associative law does not hold ; for

ViiViij= Vit=—j; but V{Vuji=0.
On the other band, the distributive law is true:

VE® + €)= V4B 4 VG,
(B + ©)% =V B% + VO
i

®)

To prove this law, construct %, 8, §, and @ B
D=9 + € from the same initial poiut, 0. ¢ g -
The terminal points of the last three vec- o%_/\ﬁ
torg form with O the vertices of a paral- i ““--@Q’C-'
lelogram, OBDC. Let this parallelogram |
be projected on a plane perpendicular to . i
The new quadrilateral, 0’B'D'(", will also
be a parallelogram. Hence if we denote QIT}"E.-_’_‘
the vectors represented by its sides and ¢ D Tl
diagonal by el

(O'B)=%, (00)=¢, (0D)=D, Fia. 72
we Bhall have cDI = ﬁ’ + G’-

Now, it is clear from the geometric construction that
(M Vus=TVue, VAE = Ve, VAD = 7AD",
Moreover, as we will presently show,
®) Va® 4 Ve = VID.
For, let the parallelogram O'B'D'C’ be rotated about the line of %
through 90° so that O’B', in its new position, will lie along Va9®.
Then O’C’ comes to lie along VG’, and O’D’ to lie along VAD".
Let the new positions of B, I, C' be denoted respectively by B,
D", ¢ Then

4
=", (=18, (0=
(%] |&y

Bat (O'B")+(0'C")=(0'D").

vay
| %)




From (B) and (7) we now infer the truth of the theorem, .

1t has been tacitly assumed that no one of the vectors %, 8, &, D
i8 & npal veefer, and that neither B nor § is collinear with 9. In
each of these excepted cases the truth of the theorem is at once
evident.

The second form of the distributive law follows from the first
form by virtue of the relation (5).

Cartesian Form of the Vector Product. Let

Y = Ali +A’l +A.f,
8= Byt + Byi + By!
be any two vectors. From the distributive law and the relations
(1) we infer that - '
VXS =(A2Ba -_ A'B:)l + (A.Bl - AlBa)] +(AlBg - AgB])!-

This result is also expressed in the form
i i t
Al A’ Al
B, B, By

Application. Let a rigid body be rotating about an axis with
angular velocity », and vector angular velocity (w). To find the
velocity, v, and the vector velocity, v = (v), of a point P of the body.

Let A be the length of the perpendicular dropped from P on the
axis. (The object of drawing in the

’

t)] VHAB =

! v frame of reference, or Achsenkreuz, is
§ T . to enable the reader more easily to
\l yd ek visualize the space figure.) Then
1
/ P/ v = ha.
Fia. 78 The direction of the motion of Pis

at right angles to the plane determined
by the axis and P. Let O be an arbitrary point of the axis, and let

v={0P), Then F v Vo).

The Cartesian form of this result is as follows. Le{ the coordi-
nates of O and P be respectively (a, b, ¢) and (z, y, 2); and let the
components of (o) along the axes be denoted by w,, ws, w3 Then

v=[E—c)e—(y— D] t+[(z — @) oy —(z—)w]}
+[(y — D) — (&— @) ]!,
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H=(2— )w — (¥ — b,
vy=(2—a)w; — (z ~ ¢) oy,
v =y — b)u;— (2 — a)ws.

EXERCISES

1. If %, 8, and § are three non-complanar vectors with the same
initial point, the volume of the parallelepiped determined by them
is equal numerically to

SAVBE.

2. Show that a necessary and sufficient condition that three vec-

tors, %, B, and §, be complanar is that

SAVBE = 0.

8. If % and B be two vectors, each of which admits a derivative
with respect to x, show that their vector product admits a derivative
with respect to z, and that

d da ds
Lvas=vTg4+va 2.
d.’l:V dz + dx

4. Prove that the equ;Ltion of a plane which (¢) passes through a
given point, 4, and (i) is parallel to each of two non-collinear
vectors, 9 and B, can be written in the form:

St—r)VEB =0,
where 1y, r are vectors drawn from a fixed point, O, in space to 4
and an arbitrary point, P, of the plane

8. Show that the equation of the osculating plane of the space

curve, § 1, Ex. 7 is

SR—r)Vri=0,
where %t is the vector drawn from the origin to an arbitrary point
of the plane.

4. Botation of the Axes; Direction Cosines. The formulas where-
by we pass from one system of Cartesian axes to a second having the
same origin (both systems being right-handed, or else both left-
handed) are important, not only in analytic geometry of three di-
mensions, but also in mathematical physics. Let the direction
cosines of the axis of 2/, referred to the (z, y, z)-axes, be 1, m,, ny;
those of ¢’ and 2’ being formed by advancing the subscripts. These
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definitions are sucsinctly set forth by the following tables, the sec:
ond one applying to unit vectors laid off along the axes :

g v & v T
X ll l* l‘ i ll l’ la
1) ylm my m i m my my
21 n ng ny Pl my my my
Thus we have
z= La' + Ly + L7 t= L'+ Li'+ LY
@ Y= m2 + mey + mg? j=my V' 4 myi' + my ¥
2= mo + my + ny? t= i’ 4 npj’' + nyl

with analogous formulas for &', ¥, 2’ (or /, |, U') in terms of z, y, 2
(or i, j, t) obtained by reading down the table, instead of across.

Formulas (2), in either form, rest for their proof on that most
important principle, which we meet early in trigonometry and use
so often in analytic geometry, that if two broken lines in space have
the same extremities, the sum of the projections of the one line on an
arbitrary line in space is equal to the sum of the projections of the other
line on that same line.

From the fact that the three letters which stand in any row or in
any column are the direction cosines of a line we see that

P24+ P+ =1 B+mi+nti=1
® m? + myt + mg? =1 W +m +ng? =1
7t 4+ m? 4+ n?=1 I+ mg? 4 mg? =1
From the fact that each system of coordinates is an orthogonal

system we have that .
Ly + mymg + ngny =0 Mgy +Many + mang = 0
(4) l’ll + mymy 4 ngny = 0 n,l, + n,l, + n,l, =0
hls + mymy + nyng = 0 Limy + lymy + lymy =0

Thus far vector analysis has not been needed, since the relations
(3) and (4) follow directly from the definitions. There is, however,
a further system of relations which is established with great ease by
means of the vector product. Btarting with the relation

Vij=1,

compute each side in terms of ¢'. j'. ¥
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Vi V(WU + Li' + B ) (my ' + mai’ + myt')
s (lymy — lymg) V' + (amy — Lmg) i 4 (hmg — ym, )T,
Yoz iy t’ + npi’ + nyt,

On equating coefficients we obtain the third triple in the following
system of relations, the other two being found from the remaining
equations (1), § 3.

l = myny —mymny My = Nyly — nyly ny = lymy — lymy

) ly = mgny —m,n, My = Nyl — 1yl Ny = lymy; — Lm,
Iy = myng —mym, my = M1y — noly ng = lLmy — lym

A further system of relations is obtained by writing equations (1)

of § 3 for ¢/, i, ¥ and proceeding in a similar manner. They are the
following :

L =mgng—myn, b = myny —myng ly=mny; — myn

(6) my= nely— ngl my= mngl;— nl, my= mly — ngly
n=lLmy— lymy ng= lymy—~ fymy ng = lymy — lym,;
Finally, it is now easy to show that
L L
) m; my mgi=1L1

7y Ry ny

5. Invariants. We have given a definition of the scalar product
of two vectors, which makes that product depend only on the vectors
involved, and not on any system of coordinates. Then we evalu-
ated it in terms of a Cartesian system of axes and found that

(1) 8 AB = A131 + Ang + AaBa.

Referred to a second system of Cartesian axes, obtained from the
first by the transformation (2), § 4, the scalar product has the value

@ S U8 = AB, + ALB)+ ALBl
Hence
@ - 1Bl + 4;B; + 4By = 4,B, + 4, B; + 4By,

Such an expression is called an invariant* with respect to the
transformation because, when formed for the A'’s and B'’s, it bas
. the same value as when formed for the A’s and B's.

# Yor a general discussion of the idea of invariant cf. Bdcher, Aigebra,
Chap. VL.
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The proof given above that the expression

@ A\ By + AyBy + .44By

is an invariant was geometric. By virtue of the relation (1), this
sxpression was identified with a quantity, S%®, which from its very
definition is invariant. It would be possible, however, to give a
direct algebraic proof by computing the A’s and B's in terms of
the A's and B'’s, substituting these values in (4), and redueing.
The stuodent should carry through this proof.

The Vecior Product. The situation is similar with reference to
the vector product. This vector, like the scalar product, depends
only on the two given vectors, not on any system of coordinates.
Its value in terms of a Cartesian system of axes has been found
to be:

it f 1
& VEB= | 4, A, A,
B, B, By

Hence the expression which stands on the right, when formed for a
new system of axes as given by (2), § 4, each letter that enters now
‘being primed, must have the same value, since it represents the
same vector.

Again, the proof is geometric. An analytic proof can, however,
be given directly by computing the A’s, B's, i, i, ! in terms of the
A'’s, B'%s, {', i, ', substituting these values in the determinant, and
reducing. The law of the multiplication of determinants, and rela-
tion (7) of § 4, are here involved. The student should carry through
the details.

It is not merely to satisfy an sesthetic desire for completeness or
a moral desire for truth, that we have given the above discussion of
the two aspects of each of the invariants — the geometric definition
and the analytic expression — but rather to provide ourselves with
the means of dealing with the symbolic wectors which enter in the
next paragraph. For there, the geometrie definition ceases tb exist
and we are obliged to fall back on the analytic form.

8. Bymbolio Veofors. Curl. Let u be a function of 2, ¥, #, con-
tirluous together with its derivatives of the first order, and let it be
earriad over by the linear transformation (2), § 4, into & fupction of
#, 4, #. Then
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ou fu fu ou
6_:;'=l" a—a;'f'%ay‘l"hé;y
ou ou du
=l 5;+m’6—_1,+n'5£’

0
Yt Xy 2y, 2
y oz
Thus it appears that, when z,y, z are subjected to the linear
transformation (2), § 4, the partial derivatives of u with respect to
, y, 2 are transformed by precigely the same law.
If we expunge from these equations the letter u altogether and
interpret the marks
2 9 @ 9 o @
w W a  w o w
a8 ordinary numbers, then equations (1), modified as prescribed,
represent the same linear transformation (2), § 4, performed on
these variables. The equation

®

d 2 7
2 = {— { — —_
@) v=lntintls
represents an ordinary vector, the expression for which, after the

rransformation has been performed, is

'i+i'_a- +['_?_.

= {
V="a Tyt e

Thus if
X=Ait+ Bj+ C?
be an ordinary vector, we have,

2 ? 3
3 SvA = $A+@B+é;o,

and this quantity, as we saw in § b, is invariant with respect to any
transformation (2), § 4.

‘We now proceed to show that, if we interpret the symbols on the
right of this last equation as meaning differentiations, the same re-

sult is true, or ol . . 20
A aB' "’ = A _@ —
@ EEi iy w il mal i
where 4, B, C are any three functions which, together with their

firat partial derivatives, are continuous. We have:
' ' ' '
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with similar formulas for #B'/2y' and 8C"/02. Thus it appeam
that the actual computation of 04'/dx' is identical in form with the
evalustion of the product *

(11§;+m1 2+ nq—a—>(hA+ mB+n.C),

and the subsequent interpretation of such produocts as -—A, ete.,
as meaning differentiations.

It is in this sense that symbolic vectors are to be understood.
They are not vectors in any geometrical sense, and the geometrical
definitions of the scalar product and the vector product do not apply
to them. They are vectors only in the sense of algebraic form, and
their definition must in the nature of the case be purely algebraie.
Obviously, the discussion in § 5 must underlie any real understand-
ing of what is going on here. Those vector analysts who omit such a
discussion put themselves into the class of people who justify the
means by the end.

The invariant

®) sva=224+ 28,22
is kmown a8 the divergence of the vector 2( and is denoted by div 4: .
® diva=svu=24458,50.

CQurl. Consider the vector product

t it

=2 2 2

) VVd= w w &
A B 0‘

This vector is invariant for geometric reasons when we interpret v
as an ordinary vector. It is invariant for algebraic reasons when
we interpret V as a symbolic vector. With the latter interpretation
it is known as the cus! of the given vector, ¥ :

STt is obviously immaterial whether we prove that the right-hand side of
(4) can be transformed into the left-hand side, or the left-hand side into the
vight-hand.
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‘ 3C _oB 24 _2¢C 2B _24
ol =V Ve =~ -2 —_—— ==
(® ourlli= (ay az>i+(3z 3m)i+(3z 83/)"
The Invariant 8 VVu==Au. It is possible to write Laplace’s
operator,

®) a=Z 2,2

Ll
"'+ +a~z§;

oxt ' oy
in the form of a symbolic scalar product, and thus bring out its in-
variant character, for we see that
N

(10) SVV“a—zz"'a—ye*';Tzz'
It is for this reason that Laplace’s operator is sometimes written as
V* (read triangle squared). Thus

_40u, . 0u, Ou
is a vector function — the so-called gradient of u, an invariant under
the transformations (2), § 4 — whereas

12) Viu=8VVu = Au

is a scalar, also invariant.

7. Groeen’s Theorem and Stokes’s Theorem in Vector Form. It is
possible to write the main results of Chap. XI, §§ 9, 10, in vector .
form and thus bring out their invariant character. Thus Equation I,
§ 9, of that chapter appears as:

® ff SVHdV = —ffsmvds,

where v denotes a unit vector directed along the inner normal to the
surface S.

In Ex. 2 at the close of that paragraph, the right-hand side of the
equation is already in invariant form. The left-hand side can also
be given such form by writing the integrands of the triple integrals
respectively as u § VVv and 8 Vu Vv,

Green’s Theorem, as expressed in Ex. 3, is already in invariant
form, since Laplace’s operator is invariant.
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Btokes's Theorem, § 10, I. of Chap. XI, now appears as

@) f 8§ (curl %) v dy =J‘Sﬁd4,

where A= Pi+ Qi+ R},

. and thus its invariant character is established.
The condition that

(=, 41 1)
J(Pda:+ Qdy + Rdz
(@3,¢)

be independent of the path of integration can now be written in the
vector form
3 curl % = 0.

8. Curvature and Torsion of Twisted Curves. Fremet's Formulas.
Let a space curve be given by the equations
(1) a;=f(a), y=¢(’) 2= 'l’(’)’
where s denotes the arc. Let
T =2t + yi+=zt

be the vector drawn from the origin to a variable point of the curve.
Then

2) t=t'=2'i+y'i+2'?
is a unit vector drawn in the sense of the positive tangent (the
increasing s).

The vector ¢ is normal to the curve, since St'v"'=0; § 2, Ex. 3.
Moreover, it lies in the osculating plane; §1, Ex, 9. In the case of
a plane curve, its length is the curvature, and the definition is ex-
tended to twisted curves :

@ k=l |t = VETE YT
P
Let # be a unit vector taken along ¢':
@ n = pr.
This vector lies along the principal normal; Chap. VI, §5.
Finally, let
&) y=Vtn,

Then v is a third unit vector, and it lies along the binormal; 1. ¢
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The three unit vectors,
(6) t=1, n = pt'), ve=Vin,
are oriented toward each other as the axes of x, y, 2. It is conven-
ient, moreover, to form the picture of these three
vectors drawn from a fixed point, O, in space. I1f
we think of P as describing the curve (1) with
unit velocity, the terminal point 7 of t will de-
scribe a path on the unit sphere about O witha .~
velocity equal to the curvature, and the terminal -1
point @ of v will describe its path with a velocity
equal numerically, as we shall presently see, to the torsion.

The Derivatives, t', v, v'. From (2) and (4),

n

M by

The vector »' is parallel to n, as seems plausible from the fact that
the curve has contact of higher order with its osculating plane. A
proof can be given as follows. Write (cf. § 1, Ex. 4)

vV=at+bun+cw
Since » is a unit vector, Sww' =0 by § 2, Ex. 3. Thus
0=8Sw'=a8u +bSv1} +cSw.

Now v is perpendicular to t and n, so Svt =0, Symm=0. Moreover
Syw=1. Hencec=0. N
Next, differentiate the equation Stv =0:

Sthv+8Stv=0.
From (7) we see that St'v =0. Hence
0=8tV=aStt+08tm=a

i o o v n

Fic. 74

Thus »' == bn, and the theorem is proved.

The coefficient b is defined as the forsion; its reciprocal, as the
radius of torsion, r. Thus the torsion is a signed quantity (Z.e. it
may be either positive or negative); the curvature is unsigned.

We have, then, finally as the evaluation of »':
® V=1

T

To compute the torsion, observe that it follows from (8) that

Snv'=-1~8un ul-
T T
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Since v Vin=pVr't”,
we have: V=V 't + o' Ve't”,
and so 8w/ = p 8"V = p* St V',
Hence finally

® y 2

2y g
z" yru P
- m’”+y”’-+z”2 *

(9)

Computation of w'. It remains to compute n’. Since

a="Vu,
we have: W=V +Vt
Vo Vut__t v,
p T p T
The results here established are known as
Frenet’s Formulas : —
ﬁ = % E »
ds P
dun t
— = — - ¥ — -
(10) ds p ;
-d—y = * E »
ds T
EXéROISEﬁ

The formulas for the curvature and the torsion, when z, y, z are
expressed as functions of an arbitrary parameter ¢, are as follows:

1_|Vi¥| 1__ SiVe¥
@ PRt IR | 2T

where the dot denotes differentiation with respect to ¢

The first of these is deduced by the aid of Lagrange’s Identity re
lating to any four vectors:
(12) SVAB VB = SAW SBY — SAB FA'S;

¢f. Blaschke, Differentialgeometrie, vol. I, pp. 6 and 18.
Deduce these formulas with the help of the following suggestions
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1. Show that =i,
V8t

2. Show thas :"=_"5_‘._M.
St (Sti)?

8. By means of Lagrange’s Identity, prove that
Srr Sy — (8iv) = | Vit |2
Hence obtain Formula (11) for 1/,.

4. Show that " = (S%—)m-y art + bi,

where a and b denote scalars which it is not required to compute,
Hence obtain equation (11) for 1/7.
5. Prove Lagrange’s Identity by direct computation, availing
yourself of the simplifications rendered possible by the symmetry
of the expressions,

6. Write out Equations (11) in ordinary form, not using any
vector notation.

9. Notation. There are two aspects of vector analysis.” One is
formal, and has to do with the manipulation of algebraic identities.
The other is geometric, and is chiefly concerned with the relation
of the geometric concepts involved to facts of nature and the ex-
pression of these facts by equatipns between ordinary real quantities.
The formal treatment necessarily lays much stress on notation and
prizes highly the product 1dea. It writes the scalar product as

(¥8) or %AV or UB

and calls it, for no obvious reason, the.inner product. And it writea
the vector product as ~

[#B8] or ¥%x® or AV
and calls it the outer product.

On the other hand, certain laws of physics involve the conception
of vectors and the combinations treated in §§ 1-3, and so are best
slated in vector form. It contributes to ease of comprehension to
call a scalar a scalar and a vector a vector, and the old Hamiltonian
notation of § and V, to which we have harked back, is self-explana-
tory.* When the vector expression of these laws has once been per-

* Hamilton’s scalar product was the negative of that defined in §2. The
Iatter is the form which has been pretty generally accepted by later writers,
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céived, the next step is the translation into the form of three ordi-
nary equations, involving the things with which ordinary analysis
deals — integrals, derivatives, etc. —and the ultimate goal in the
formulation of the physical law is the appreciation of the inner
meaning of this last system of three ordinary equations —a mean-
ing invariant of the choice of the coordinate axes.

80 deeply impressed with the importance of this fact was the
author of one of the greatest expositions of a physical subject ever
written — Appell, in his Mécanique rationelle— that he dispenses
altogether with the form of vector analysis and passes directly from
the vector conceptions to the firal result. Surely, this example may
well give pause to those expositors who lean to a highly technical
notation, the form of which is not geometrically suggestive, while
algebraically it is so condensed as to refuire special training for
its use. They are like the analysts who prove every theorem which
has to do with a question of uniform convergence by direct use of
¢8. The ¢'s are essential for establishing the basal theorems, just
as the scalar and vector products are useful for establishing the
basal theorems in certain branches of physics. These theorems
once established —and their proofs involve but slight formal work,
rather an appreciation of the inner content of the situation — it is
the part of wisdom to work with these resuits, not prove them afresh
every time one needs them. We do not compute our logarithms
each time, before we use them. And so the general student can well
dispense with these highly condensed notations, taking them up
later if he has oocasion to use them in some special and technical
piece of work. When that time comes, he will find it most helpful
to write his own ABC of vector analysis in terms of the notation

« he wishes to learn.



CHAPTER XIV

DIFFERENTIAL EQUATIONS

The student has already met a variety of differential equations in
his study of the Calculus, and integrated them. The object of the
present chapter is to systematize the methods which have hitherto
been used, and to extend them. We shall, moreover, consider what
the nature of the condition imposed on a function by a differential
equation is and thus see how an approximate solution can be obtained.

1. Ordinary Differential Equations. An equation which connects
a function, y, of a single independent variable, z, with its derivatives
of the first » orders:

dy d2 dr

(1) F(”)y’ E;%v -d_:” "ty ﬁ)'—’oy
is called an ordinary differential equation, in distinction from a partial
differential equation (cf. §21), and its order is defined as n. If
several functions, y, 2, ..., are connected with one another and their
derivatives by as many equations as there are functions, we have a
system of ordinary differential equations. Thus the equations

@) %"F(‘”’yiz)! é‘d:= ®(z,y,2)

form such a system.

By an integral (or primitive) of equation (1) is meant a function,
¥ = f(z), which satisfies that equation; t.e. if f(z) be substituted for
y in the left-hand member of (1):

F(m,f(z), d{i'iz), d*af;x)’ ., d“f(w))’

dzn
this latter expression, which is a function of z alone, vanishes iden-
tically.

Fach time that we have integrated a differential equation of the
first order, we have found, as the most general solution, a function
depending on one arbitrary constant. When we have integrated a
differential equation of the second order, we have found a function

depending on two arbitrary constants. And so we surmise that the
309
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most general funotion which satisfies equation (1) will depend on %
arbitrary constants, = (@, 01y C,)-

The guess is correct, and the precise formulation of the theorem will
be given in §§ 15, 16.

As regards the processes admitted, we shall consider a function as
known when it is given by & guadrature, t.e. when it is determined
by an integral. This amounts to saying that, if

4
Y~ 1@,

where () is any function which is merely continuous in an interval
a < & < b, and if z, is a point of this interval, the function

F(z) =ff(ﬂ=)d==

is considered as a known function (geometrieally, it is the area under
the curve), although it may not be possible to evaluate the integral
in terme of the elementary functions; ie. to express it in terms of
rational functions, radicals, sines and cosines and their inverses,
logarithms and ezponentials, or as a combination of such functions,
Example: the elliptic integral

" g dx .
.f\/(l — at)(1 — k%a?)

‘We note that any indefinite integral which satisfies the above
differential equation can be written as the definite integral whose
value is F(z), plus a constant, or

JFMM=J}@M+G

Becondly, we regard a function as known when it is given by an
$mplicit equation. Thus the equation

log (2% + 3?) = m—lg +C
defines y as a function of x, although we see no means of expressing

yexplicitly in terms of » by means of the elementary functions, and
there is, moreover, no reason to suppose that such an expression is

possible.
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I. EquaTioNs or THE FIrRsT OBDER
3. Boparation of Variables. Let the differential equation

® Y = f@3)

be given. It may be possible to separate the variables, i.e. so to
transform the equation that all terms involving # appear on one
side, and all terms involving y on the other side:
dz dy
==t SR
M@ N(y)
The equation can then be integrated :
de dy
M(2) Ny
where an arbitrary particular indefinite integral is chosen in each
case.
The first example of the application of this method which we met

appeared in the treatment of Simple Harmonic Motion, Jntroduction
to the Calculus, Chap. XIII, § 6, p. 366:

& _\LVE—R,

dt R
R dr
dit = —4 /=
=
¢=_\/E dr =\/Rcos-l '+C
9.) VR:—1r? g
EXERCISES

Integrate each of the following differential equations : —

W _ g Ans. y=Ce.
1. =27 Yy
3. dy 2. Ans. 22 —yt=C.

dr y

ay _ . Ans. Ox.
8. dr = y=
4. sec @ 00s? y dx = cos ¥ 8in y dy.

Ans. secy = tanz 4 C.
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B. VZay — yicscade 4 ytanwdy = 0.
Anas. csca:naoos'la—:—!— V2ay -y 40O

.. (3 +z)% =22+ 3).
7. eVl —yde+yvV1—2dy=0.
8. (ev + 1) cosxde + e sinady = 0.

8. Linear Equations. By a linear differential equation of the first
order is meant an equation of the form *

@) %+Py=Q,

where P and @ are given functions, depending on 2, but not on y.
Such an equation can always be integrated by means of the follow-

ing device. Multiply through by the factor f &/”*
@ ejrda(z_ij’_*_ Py) = er’pa.

The left-hand side is seen at once to be the derivative of the function
ye®™. Hence (2) can be written in the form

® L (vef) = @™,
and it remains merely to integrate each side of this last equation.
Example. Given

dy_ y_
da:+a: 42
Here, I = gt = g,
On multiplying through by = we have:
x%-}- y =425
or 2 (zy)= 4.
- dz

= Extensions of the definition are found below in § 11 and § 27.

1 Known as an fnlegrating factor ; of. §20.

1 The student should review carefully Chap. VL, § 1, of the Infroduction to
the Oalculus, for he will be expected, in the present chapter, to use freely the
elementary properties of logarithms.
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Hence : y=uat4 O
or y::a'-'-go
x
EXERCISES
Integrate each of the following differential equations :
1. 55 Y_az Ans. y =224 Cxz
d 22y _ _4at, =
2. d_a!:—.n?+a2—1' dns. y=""Ctan T4 O + o).
A
3. %+ycotm=secw. Ans. y=(log secz + C)csc =
d
e 2% = —4
Tz +d+ay=e Ans. y = 2:c+ x
S ar __ -8
[ To r—y 8. coth r+e
Y,y % _ ay =bsi
7. dw+y_cosx. 8. i ay =beinz.

9. Show that the differential equation

q
21

dg
= 2=
az T %,

can be reduced to a linear differential equation by the substitution
y=2"

10. Integrate the differential equation

ds_ b
a-vts

4. Homogeneous Equations. The differential equation

@ 2=9(¥)

is sometimes called a homogeneous equation, because the right-hand
side is homogeneous fof order 0) in # and y. It can be integrated by
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a quadrature. Introduce & new variable,*

v="1.
z
d
Then Y=z, £=mg—:+v,
and equation (1) becomes:
dv
@ "

Hoere, the variables are separable ; we have

@) dzx - dv

= ¢(v) -’

and it remains merely to integrate each side

Example. dy_z+y,
de =z=—y
d 1
v=3 e
dz_ 1—w

z 1+ vzdv’
logx = tan-lg—-flog(l +v) 4+ C

=ta.n-1%— log Vet + 32 +logz 4 C,

tan-t l = log x2_+lz .
x a?
In polar coordinates this equation becomes:

¢ = log'-;-,

r= ae?,
an eqaiangular spiral.

* The student will recall that a simjlar device was employed in algebra for the
solution of two simultaneous quadratics of the form — the so-called homogeneous
OO —

a2+ by + oy =d,
W23 + by + oyt = da
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EXERCISES
Bolve the following differential equations : —
d T —
1 Y _T—Y. . 2 — -y
, == oty Ans. 22 =22y -yt =C
d 22 4 3y
2. ——z = . 3 —_ )8 =
- 2ty Ans. (@ — i+ 2y)=C.
s W_z+4y 4 Wty
dz 24y d» z
d Az + By
8. Y2 DY, .
o~ Ozt Dy Treat all cases
6. Show that the differential equation
dy __z—y+3
de z+y—5

can be reduced to the form considered in Question 1 by means of
the transformation :

z=2'+h y=y+k
where k and k are determined by the equations:
h—k=-3, h+k=5.
7. Apply the method of Question 6 to the differential equation
dy _ Az+By+ L AD — BC 0.

de Oz4Dy+ M !
8. Solve the differential equation:

dy _ _=z+y | 2z —y)=1log 2z +29y+1
il | Ans. 2(z—y)=log 2z + 2y + 1)+ C.

9. Show that the differential equation of Question 7, when
AD — BC =0, can be solved by one of the substitutions

z = Ax + By, z = Cz + Dy,
yrovided all four coefficients 4, ---, D do not vanish.
10. Solve the differential equation

¥
o g—cvVaiiyt

e =5 (-

if yma when =0,
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11. Show that the differential equation
%nf(am-i- by), a0, b0,

can be solved by aid of the substitation
v = a3z + by.

12. Integrate the equation:
%’i = sin(2z + y).

18. Bhow that Equation (1) of the text admits the solution

Yy = az,
in case the equation
| €= 40
has a root, t=a.

5. Equations of the 8econd Order with One Letter Absent. Con-
sider the general differential equation of the second order,

@ 2 - F(x, v, %—Z)-

The function F* will in general involve all three arguments, z, y,
and dy/dz. 1f, however, one (or both) of the letters = and y is lack-
ing, the equation can be reduced to one of the first order by means
of the substitution i

® P=g

If y is lacking, so that F(z, y, p) = $(=, p), then (1) becomes
® P — ¢(a, p).
If, however, it is « that fails, but y is present, so that
F(z,y, p) = ¢ p),

&y _dydp _ ,9p
d# dzdy ° ady’

we have for (1) the eguation

then, since

d;
@) Pa‘s = y(¥, p).
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In each of these cases the solution of (1) has been reduced to the
solution of a differential equation of the first order, followed by a
gquadrature,

A differential equation of the n-th order, which does not contain
both the independent and the dependent variable explicitly, can be
reduced in the same manner to one of lower order, and it remains,
then, to integrate the latter and to perform a quadrature.

Ezample. We met this method for the first time in the chapter
on Mechanics, when we integrated the differential equation
d?s
ar = f(s)

by introducing the variable
ds

V==,

dt
thus reducing the original equation to the form
dv
v = 7).
EXERCISES
1. Integrate the differential equation

(%2 + a2 cos? 0)%—3— a2 sin # cos 9(%3)’= — agsin §.
ns. (k% + a? cos?f) % = 2ag cos § + C.

dz dx\2
a2 _ 11 (%=
ydy2 ¢ + (dy) ?

if ¢ is positive and % 1, and y =1, dz/dy = 0, when z = 0.

+1 1-¢
_ 1 ¥y 2e
Ans. x_j}{c+1+c-—1 c’-l}'

2. Integrate:

Applications

6. The Catenary. The catenary,as its name suggests, is the curve
in which a chain hangs. Let us determine its equation.

The physical assumption is that of a material curve, homogeneous
(i.e. of constant density, p), perfectly flexible, and inextensible, whose
ends are fastened at two fixed points and which hangs at rest under
the foree of gravity.
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- Let the axis of » be horizontal, and at a distance ¢ below the

lowest point, A4, of the curve, where ¢ is a constarit whose value

we will assign later; and let the axis of

/4 ¥ pass through 4. Let P:(z,y) be an
+  arbitrary point of the curve, and

- P:(z+Az y+ Ay),

s second point. Consider the arc PP
and isolate this system; i.e. consider this
portion of matter and the forces which
act on it. They are (i) the force of
gravity, goAs, where p denotes the mass of one unit of length of the
string ; * (i) the tension T at P, directed downt the tangent; (Vif)
the tension 7" = T+ AT at F, directed upt the tangent. Now,
this are PP has been assumed flexible ; but since it is in equilibrium,
if it congeals and becomes a rigid body, it will obviously { continue
to be in equilibrium under the action of the above external forces,
(9), (i), and (i%5). But we know the conditions under which a rigid
body is in equilibrium under the action of a system of forces; in
particular, it is necessary that they be such a system as would keep
& particle at rest if they all acted at a point. Hence the algebraic
sum of their components along an arbitrary direction must vanish.
Resolving, therefore, horizontally and vertically, we have:

(=) T'cost' = Tcosr;

®) T'sint' = Tsinr + gpAs.
From (a) we infer that

@ Tcosr = Ty,

where T, denotes the tension at the lowest point, A, For, we may
take PPat A,and then T =1T;, ' =0.
Equation (b) can be written in the form:$

#71t is not important here that forces be measured in absolute units. If the
student prefers, he may take w as the weight of one unit of length of the string,
and then the force of gravity becomes w As.

t+ H P lies below P, these directions will be reversed.

$ This is, of course, the assumption of a new physical law, so compelling
howaver, a8 to seem self-evident.

§ An squation analogous to (1) can be derived from (b), namely,

Tein 7 = gps,
where s it measured from 0. Mechanically, this means that the vertical com-
ponent of 7 at P is just equal to the weight of the arc in question.

PSR 1Y FUNDEON VY SR W PURSRPRY DUt Sy S Dy SRy 1 3N T P
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(b’) T'sine — Tsinr = gpAs.

The left-hand side of this equation is precisely the increment of
the function T'sinr. Hence (b) becomes :

" A(Tsinr)=gpAs.
Divide (b') through by Az and then let Az approach the limit 0:
lim A( Tsinr) _ gp lim _1}3,
Aok Az Avso AT
or*
2 D,(Tsinr)=gp D,s.
Replacing T in (2) by its value, T,secr, from (1), we have:
To Dz (wn 1') = gp Dzs,
or, since tanr = D, y,
@ Diy=1D.s, e=D,

the last equation giving the value we now assign to c.
To integrate equation (3), which we now write in the form

diy 1 dy\?

4 e }1 oy

® oV T (da;) ’

we observe that (4) is a differential equation of the second order, in

which the variables # and y do not both enter explicitly. On setting,
therefore, by § 6

=%
(6) p=g
equation (4) becomes
®) dp_v1+p%
dx c

This is a differential equation of the first order, in which the
variables are separable, § 2 :

de____ dp |
e Vitp

* We use the notation D, for the derivative advisedly ; for, the formulation
of the physical problem whieh culminates in equation (2) leads to derivatives,
Nor to differentials, The latter are introduced later for purely analytical rea-
sonx, Thus the derivative expresses the thought of physics ; the differential is
the tool of mathematics.
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Hence

) g -—~dL—=1c)g(p+’v’1+P’)+O'.
¢ V14 p?

At 4, =0 and p=0. Hence C=0.
Equation (7) is equivalent to the following

) VI¥p +p=e.
In order to solve this equation for p, we could clear of radicals and

proceed as in elementary algebra ; but the following method is more
elegant. Take the reciprocal of each side of (8):

1 .
—_————= c,
Vi+pi+p
And now rationalize the denominator by multiplying numerator and
denominator by V1 +p? — p. Thus we find:

© VIitpt—p=ei
On subtracting (9) from (8) we have:

(10) 2p=¢—¢e 9, or

(e

g
[SI0 )

—e*).
We can now find y:
y =f%(e°_ —e °)dzx =§(ec +e 9+ K.
To determine X, observe that, when z=0, y=c. Hence K=0
and we have, as the Equation of the Catenary :

a IE S

All catenaries are similar. When ¢ =1, we have the hyperbolic
cosine, Chap. XX, § 9.
(12) y = chz,

and, generally, y=cch &
C

EXERCISES

1. Suspension Bridge. Find the curve in which the cables of a
suspension bridge hang, when only the weight of the roadway is
taken inte account. Ans, A parabols
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Note. It is assumed that the roadway is straight and horizontal,
and not subject to any stress of bending; that the weight per run-
ning foot is uniform ; that the vertical rods which connect the eables
with the roadbed are 8o near together as to form approximately a
continuous system; that the weight of these rods and of the cables”
is negligible, compared with that of the roadbed ; and that the cables
are perfectly flexible.

2. Japanese Screen. A bamboo screen for a hall closet is made by
suspending slender rods of rattan, all of the same diameter, from a
string, to which each rod is knotted, and letting them hang down so
that each rod just touches the floor, two consecutive rods just touch-
ing each other. TFind the curve in which the string hangs, if the
diameter of the rods is negligible. . .

Ans. Y= §(e5+e_:), c==.-%.

3. Suaspension Bridge; General Case. 1f, in Question 1, all three
weights — cables, rods, and roadbed — be taken into account, find
the differential equation satisfied by tho cables.

& dn
Ans. a%:wly+w2\f1+(—i%+w,

4. Show that a catenary of variable, but continuous, density is
determined by the differential equation

5‘_23_’._321)1 a4y,
dz2 T, t

5. Show that a non-homogeneous heavy string can hang in equi-
librium in an arc of the circle

x? 4 Yt = al,
if the density is equal to aT,/[g(a? — z*)].

"

8. Prove that the foreces which act on an arc of a catenary limited
by the vertex are such that the algebraic sum of their moments about
the vertex is nil.

Hence show that the sum of the moments of the forces acting on
an arbitrary are is nil, no matter about what point the moments be
taken.

7. Show that the centre of gravity of an arbitrary arc of a catenary
lies directly above the point of intersection of the tangents drawn at
the extremities.
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.

7. Oontinuation; Discussion of the Catenary, , The lowest point
of the catenary is called the vertez, and the line coinciding with the
axis of w, the direstriz. The curve is symmetric in the vertical
through the vertex.

Mechanioal Meaning of the Directriz. If a peg, of negligible radius,
be placed at any point P:(z,y) of the curve, the catenary secured
at P from slipping down, the string cut considerably above P and
allowed to hang straight down ; and if, now, this free end be cut off at

the directrix ; then the string, assumed smooth, can

v
be released at P and it will not slip.
. For, the tension in the free end at P will be simply
the weight of a segment y units long, or goy. On

Fie. 76 the other hand, the tension at any point is, from (1),
T'=Tysecr = T =
Now, from (8) and (9), and (11),
L VITF=jE+eal
Bubstituting for ¢ its value from (3), we have:

(13) T = gpy,
and this completes the proof.

Thus we see that we may apply smooth pegs at any two points,
hold the catenary against them, and cut the string so that each end
will just reach to the directrix. On releasing the string at the pegs,
it will not tend to slip.

The Arc and the Tension. The length of the arc, measured from
the vertex, is

(14) s=§c(e5—e_;)=csh%-
The tension haa the value (13), or
(15) ngpyalz'o(é +e¢9="TyonZ.

Problem. A chain 32 ft. long has its ends fastened at the same
level to two posts 30 ft. apart. To find the dip in the chain.

This problem was studied in the Iniroduction to the Caleulus, p. 174,
Ex. 2. The determination of the constant ¢ (there denoted by a)
leads to an equation,

' e—e*—§3z=0, = -1?5
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which cannot be solved by the ordinary methods of algebra.® That
it has a solution, is clear from the fact that a continnous function
‘which changes sign must pass through the value 0. The higher
methods for solving this and similar equations, which were set forth
in that chapter, lead readily to the result that ¢ = 23.9, and hence
the dip imfound to be 4.89 ft,

EXERCISES

1. Two smooth pegs at the same level are 2 a feet apart. Show
that the shortest string which can be hung over them so as not to
slip when released is of length 27 =2 ea.

2. If the pegs in the preceding question are 2 ft. apart, and if the

string is 6 ft. long, show that it can be hung over them in two, and
only two, catenaries. Determine the vertex and the directrix of each.

8. Find the tension at the lowest point' of the chain in the Prob-
lem of the text, if one foot of the chain weighs 4 1bs.

4. What should be the length of the chain in the Problem of the
text, that the dip be precisely 1 ft.? Show that ¢ is given by the
equation
15

chz=1+ /=, z=?

Solve this equation for z by means of Peirce’s Tables, p. 124, to
two significant figures; z = .13.

By means of the series

| ot
chz=1+?!+z_!+... ,

obtain the approximation z =4 Then, setting = (& — ¢, obtain
an approximation for ¢, and show that x =.1331, to four significant
figures.

8. Find the tension at the lowest point of the chain in the pre-
ceding question.

8. Show that all catenaries having the axis of x as their direetrix,
the vertex of each catenary being on the positive axis of y, lie above

the lines y = mg—?ﬁ and y=— m%ﬁ, where A is the positive root of
the equation | @ = coth z,

each catenary being tangent to each of these lines.
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7. ®wo smooth pegs are at the same level and 2 ft. apart. Find
all the positions of equilibrium for a loop (= closed string) 6 £t Jong,
which is hung over them.

8. Rope round a Post. Let it be required to find the law of ten-
sion in a rope which is wound round a post and is just ongthe point
of slipping.

We have to do here with a flexible inextensible weightless string
wound on a rough circular drum. Consider an arc PP. Imagine
this arc now to be frozen, so
that we have a rigid body to
deal with. Isolate this sys-
tem. The forces acting on it
are: (i) Tat P; () T'=
T+ AT at P'; and (i%) the re-
action of the drum, which is a
foree &S, inclined toward the
direction opposite to that in

Fia. 77 which the string tends to slip.
Let § make an angle ' with
the radius OP produced. Then the physical law is that
Y] lim A" = X,

V£ 4

where X i8 the angle of friction, or p = tan \.

In order to make clear to ourselves the plansibility of this law,
imagine a heavy chain to be laid out straight on a rough floor, and to
be pulled so that it is just on the point of slipping. Consider an arc
(i.e. a segment) PP’ of this chain. The forces

acting on PP! are: T, ", W,and §. And now, , /s
by the ordinary law of friction, we have, that § >
makes precisely the angle of friction, A = tan 4, w

with the normal to PP'.

The situation in the actual case is similar.
Here, gravity is replaced by the pressure of the curved surface of
the drum against the weightless arc PP' of the string. When the
arc is short, it is like the straight line segment of the chain, and
it is clear* that § will make an angle A’ with OP produced, which
18 nearly equal to A,

Fi1a. 78

#Not from mathematical reasoning, but from physical intuition. We are
stating here the physical hypothesis which we lay down, and on which the whole
trestment of the problem turns.
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We can now proceed with the mathematital treatment of the
problem. Resolving the forces along the tangent and normal at P,
we have:

(@) T'cos Ap= T+ Ssind';
(®) T'sin A¢ = S cos ).
Hence
i
T cos'A¢—- T=ta.nx'
T'sinA¢ :

or
T'cos Ap— T = T" tan A' sin A,

Write the left-hand side of this equation in the form :
(T+ AT)cosAp — T= AT cos Ap — T (1 — cos Ad).
'We are now ready to divide through by A¢ and take limits :

AT o Ap—T 1—0c08Ad _ gmyp yr8i0 Ad.

Ad Ad Tag

im 22 (1 — Tlim L= C84¢
(55 (Bmeonse) - ThmE=3

_—=(lim 7'\ lim tan )J) <lim §Elﬁ)-
Ap0 Apad apx0 A
By the Introduction to the Calculus, Chap. V, § 3, we have:

;1 — cos Ag ., Bin A¢
] —————:0 1m———=1-
shw AP ’ s B 7

and from the physical law,

lim tan A = tan A = p.
Adund
Hence, finally :

@) DyT=uT.

Again it i8 a derivative that expresses the phy.;ical thought of the
problem. In order to wanipulate mathematically the result, we
introduce differentials:
®) LA

de

This differential equation can be integrated by separating the
variables, § 2: .

’ (—111,1? pdé;
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! arT
f_-!-;- pdé;

log T'= u¢ + C.
When ¢=0, T=T,. Hence C =1log T,, and we have as the law
of tension :
(%) T= T,e*
It will be observed that the result is independent of the radius of
the drum.
EXERCISES

1. The Miles Standish is docking at Nantasket and a longshore-
man is holding her by a hawser wound round a post of the wharf.
If the coeflicient of friction is }, and if the steamer is pulling with a
force of 5 tons, how many turns of the hauser are necessary, in order
that the man need pull with a foree of only 50 1bs.?

Ans. Slightly over two and a half.

2. If the coefficient of friction of a band brakeis }, show that the
brake will be nearly six times as effective when applied to a com-
plete circumference, ag when applied only to half a circumference.

9. Heavy Strings on Burfaces, Rough or Smooth. Let a heavy
chain of continuous density, p, rest on &
smooth surface and lie in a vertical plane,
The forces acting on an arc PP', which
we isolate and assume to become rigid,
are: T, T'"= T + AT, 8, and gpAs, where
p denotes the mean, or average, density
of the arc. Let the angle from S to the
normal at P be e. Then the physical law
is that

1) lim ¢ =0,

Piap
In fact, it is clear* that the direction of
8§ must lie between the two extreme nor
mals — the one at P and the one at P,
Resolving along the tangent and normal at P, we find:
{a) T'cos Ar 4 gpAscosr 4+ Ssine=T;

@) T'sin(— Ar) +-gpAssinr =S cose

¥ia. 79

#Thia is, of course, only another form of statement for the physical law.
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‘On eliminating § between (a) and (b), we have:
T'cos Ar— T + gpAscosr

T'sinAr —gpAssine O
AT 1 — cosAr Ar _ As
or —cosAr—-T—""=> "~ 2’
Az T Ar Ax +op Az cos T

tane (T SnATATAS Az N
= n‘( Ar Asdw Az T

Now allow Az to approach 0. The right-hand side of the equation
approaches 0, for lim e = 0 and the parenthesis approaches a limit.
Hence the limit of the left-hand side is 0, also. This latter limit has
the form below, or:*

2) D.T+gpD.scosr=0,
ar

aT
(3) —(.H = - gp.

If p = const., (3) gives:

)] ) To— T = gp(z — x).
Suppose the lower end of the chain has the abscissa ;. The ten-
sion there is 7= 0, and so the tension 7 at the upper end is

To = gp (@1 — ).

This is precisely the value that the tension would have if a length
@, — x, of the chain hung vertically downward. We see, then, that
a chain will rest in equilibrium on a smooth surface if it is allowed
to hang over the upper part of the surface, the free end reaching
down to the level of the end which is on the surface.

We have tacitly assumed that the curve is always concave toward
the negative axis of y, and that 0 <r < =/2, The treatment holds,
however, with slight modification for a heavy string in a smooth tube,

If p is very small and z — 2, only moderately large, T is always
nearly equal to 7,, We see, therefore, that it must be a physical

# It might seem as if this equation could have been inferred at once from (a)
alone, written in the form :

ATcos Ar — T'(1 — cosAr)+ gp Ascosr + Seine =0,

since imsine=0. But it is not clear from (a) slone that S/Az approaches a
Hmit (the essentinl thing is that this variable remain finite), when Az approaches
0.
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fact that the tension in a weightless string which passes over a
smooth surface is the same throughout. This checks with common
sense. The tension in a rope which passes through a block is the
same on both sides of the pulley, — or would be so if the pulley were
frictionless and the rope perfectly fiexible and weightless.

EXERCISES

1. On a rough circular cylinder with horizontal axis is placed a
chain, one end of which is at the level of the axis ; the other, hanging
down to a distance ! below the axis, and the chain is just on the
point of slipping. Show that the tension, 7', satisfies the differential
equation : a7

d¢

Assume the chain to be a uniform, flexible, inextensible string,
lying in a plane perpendicular to the axis of the cylinder.

2. Prove that, in Question 1,

— pT'=gpa(cos ¢ + p 8in ¢).

2 .
z=1_$(1+e»).

8. A piece of the chain of Question 1, equal in length to a quad-
rant of the cross-section of the cylinder, is laid along such a quadrant,
the lower end of the chain being at the level of the axis of the cylin-
der. Show that the least value which x may have, if the chain is
not to slip, is given by the equation :

tan 2\ = ""'\

4. Solve this equation for u to four significant figures.
Ans. u=0.7322,

8. Two smooth circular cylinders, external to each other, have
their axes horizontal, A heavy chain is hung over them, and is in
equilibrium in a plane perpendicular to their axes. Show that its
ends lie in the directrix of the catenary in which the part of the
chain between the cylinders hangs.

6. Show that, in the problem studied in the text, S/As approaches
a limit when P' approaches P, This limit, o, may be thought of as
the specific reaction, or the pressure per unit of length, which the
dram exerts on the string,

7. It was assumed in deducing equation (3) that AT/Am ap-
proaches a limit, and then that limit was computed. From (a) and
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(b) prove (i) that AT approaches 0 when Az approaches 0; and
(i4) that AT/Az approaches a limit.

8. A heavy string of continuous density is in equilibrium in a
smooth tube in the form of a twisted curve. Show that the tension,
T, satisfies the differential equation (3), the axis of # being vertical
and positive downward. 1If p= const., equation (4) holds in this
case, too,

9. Pile of Theme Paper. Suppose that a pile of theme paper is
pierced by a hole near the middle of an edge; that a string is in-
serted ; and that the paper is hung up, being prevented from bulg-
ing by two vertical walls. If the string, paper, and walls are all
gmooth, find the curve in which the string hangs.

Ans. An are of a circle,

Note. Although perfect smoothness cannot be attained physically,
still, a close approximation to the conditions of the problem can be
realized by hanging the paper up in a freight car. The jarring will
cause the paper to adjust itself as prescribed. Thin metal plates,
all of the same weight, would be better adapted to the purpose.

10. What will be the differential equation of the curve of the
string in the preceding question if the paper is trimmed so that the
lower edges all lie at the same level ? o

.’/

l 02=T°
dz\/l )2 c? w

i1. The Hydrostatic Arch. Consider a canal for carrying water
across a ravine, the bottom of the canal being an arch. What must
be the shape of the latter, in order that it may not tend to bend at
any point? Neglect the weight of the arch in comparison with the
weight of the water it supports.

Let the axis of z be chosen in the surface of the water, at right
angles to the direction of the canal, and let the axis of y be positive
downward, passing through the top of the arch. Then

4_p__¥ p=%
dz /1y pt & da
12. Integrate the differential equation of Question 11.

Ans, = f Al ol el dy, where h denotes the
Vi — )+ k2 — )

niinimum depth of the water.
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If v, > v, then o < 1, and the duck will make port. If, however,
vp < vy, the duck will be carried down stream and approach the
opposite bank asymptotically. Finally, if v, == v,, then c =1, and
the path is a parabola. The duck will sidle up towazd a point balf
as far down the bank as the breadth of the stream — much as
the Rhine steamers make a landing.

(¢) The Dog and His Master. A dog, out in a field, sees his
master walking along the road and runs toward him. Find the path
of the dog. It is assumed that the dog always heads straight for
his master, that each moves at a uniform rate, and that the road is
straight.

The same figure can be used as in the case of the tractrix, but
with a different interpretation. For here,

8=1v,l, 0Q = uut,
and it is expedient to observe that

z=0Q — MQ =v,t + ycotr.

Thus p
z=cs+y—'3, c=—v!-
dy Vp

Differentiating with respect to § and observing that ds/dy is nega-
tive, we find :

d2x dax\?
T _ a1 az\",
@) y ay? A (dy}

The integral of this equation has been found for the case that
¢xland y=1dzx/dy =0, when 2 =0; § 5, Ex. 2:

1+e 10
® z=%{ YTy 2e }

1tc 1—¢c 1—¢

and since, for a given value of ¢, all curves are similar, this one
gives the shape for the whole class.

If ¢ < 1, the dog overtakes his master at the point of the road for
which #=c/(1 —¢?). If ¢> 1, the dog approaches the road asymp-
totically. The case ¢ =1 presents no difficulty; but equation (6)
is replaced by one in which a logarithmic term appears.

. A number of further problems similar in character to those dis-
msed];hem are given in Tait & Steele’s Dynamics of a Particle,
p-

3
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EXERCIBElB

1. A man swims across a river, always héading straight for the
opposite bank. If the current is such that he is carried down stream
with & veloeity proportional to his distance from the nearer bank,
find his path.  Ans. A curve made up of two equal parabolic arcs.

2. A circular furn-table rotates about its axis with uniform velocity.
An ant steps on at the outer edge and crawls straight toward a light
at the centre of the table. Find the path of the ant in space.

Ans. r=a(l — ch).

8. If the sun is setting in the west and the ant boards the turn-
table at its most easterly point and then always crawls straight
toward the sun, show that the ant will describe an arc of a circle.

4. If in Question 2 the light had been at a point fixed in space, on
the circumference of the turn-table and diametrically opposite the

point at which the ant steps on, obtain the differential equation of
the path of the ant.

II. Linear EQUuATIiONS OF THE SECOND ORDER,
AxD Hicuer

11. Elementary Theorems. The differential equation

dr d~ly d
(1) d_a."y+Pldz”’+.“+P“_ld—z+P"y=R’
in which the coefficients Py, .-, P,, R, are given functions of =z,

which do not depend on y, is called a linear differential equation, be-
cause it is linear in y and its derivatives, If R=0:

-1
@) %+PI;%%+"'+Puy=O’
the equation is said to be homogeneous; otherwise, non-homogeneous.

The homogeneous equations form far and away the more important
class,

Taxorem 1. If y, be a solution of the homogeneous linear differen
tial equation (2), then cy,, where ¢ is any constant, is also & solution.

By hypothesis, y, satisfies equation (2), i.e.
ay e ) S =

is a true equation We wish to prove that cy, also satisfies equation
(2), i e. that
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@ @) 4 pTAB) oo 4 Py () =0

is & true equation. It is clear how to draw the inference.

Tanorem II. If y, and y, be two solutions of the homogeneous
Uinear differential equation (2), then their sum, y,+ ¥, i8 aleo a
solution.

The proof is similar to that of Theorem I, and is left to the
student.

Linearly Independent Functions. If n functions, f(z), -, /i(2),
are connected by an identical relation of the form:
®) efi(2) + - +cufo(2) =0,
where the ¢’s are constants not all 0, the functions are said to be
linearly dependent. 1f no such relation between the funetions exists,
they are called linearly independent.

Thus, for n == 3, the functions

Ji(z) =sinz, Ja(x) = cos z, fi(z)=sin(z + &)

are linearly dependent; for

Ji(@) cos e + fz(x) sin e — f3(x) = 0.

For an arbitrary value of » the first n powers of z, namely, 2 =1,
ol =z, 2%, ..., 2™, form a set of n linearly independent functions;
for the function

Gt e+t + o0 +c 2!
vanishes identically when and only when each coefficient is 0.

Existence Theorem. 1t is shown in the theory of linear differen-
tial equations that, if the coefficients of the homogeneous linear
differential equation (2) be continuous in an interval a S 2 < b,
there exist n linearly independent solutions, y,, ---, ¥,, each defined

throughout the interval.
From Theorems I and II it appears that the function
®) y=ayi+cys+ -+

is also a solution, where the ¢'s are any constants.
And now it is shown, furthermore, in the theory of differential
equations that, conversely, every solution of (2) in the above inter-
. val can be written in the form (6).

The Non-Homogeneous Equation (1). The solution of this equa
tion can be referred to that of the corresponding homogeneous
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equation (2) whenever one single particular solution of (1) can be
found, as is stated in precise form by the following

TarosEM. Let Y be a particular solution of (1); ie. a function
which satisfies (1), but contains no constants of integration. Then the
general solution of (1) 1s

y=Y+em+ - + ¢,
where ¥y, >, Y, are n linearly independent solutions of the correspond-
tng homogeneous differential equation (2), and ¢, -+, ¢, are arbitrary
constants.

By hypothesis, we have the equation

Y a1y
= = P e P = N
) dm T gt +PY=R
Now let ¥ be any solution whatever of (1). Subtract (7) from
(1); then
d@—Y) p@'W—Y) ., L pv—T =
dz" + 1 dz1 + + n(y ) - 0:
i.e. the function y — ¥ satisfies (2). It can, therefore, be written in
the form (6):

y—Y=aph+ap+ - + G
and the theorem is proved.

EXERCISES

Show that the following functions are linearly independent when
n=2:

1. sina, cosux. 2. e™ sin pt, e cos pt.
3.*% z, e 4. ¢, sinz
5. e, e, p=q. 6. em,  xe™,

Are the following functions linearly independent ?

7. n=3: €%, ef*cospx, €°sin px.

8. n=4: sinps, cospx, singr, cosgz.

9. n=4: e sinpz, e**cospr, eB*singw, B cos gz
10. By a simultaneous system of n linear differential equations of the

Jirst order is meant: P M
£=2a.kyi+am kal}'"»“'
$=1

» Supgestion. .Assume the theorem false. Then Az 4 Be® =0 for all values
of 2 ; and now differentiate. '
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The coefficients, a,, and a,, are any continuous functions of 2. The
#ysters is said to be Aomogensous if a4, =0, k=1, ..., a

‘Write out such a system (both non-homogeneous and homogeneous)
forn=2 and n=3.

By a solution of such a system is meant a set of n functions.

h=L (%), k=1,.n,

which satisfy the given system.

State and prove Theorems Iand II for a homogeneous system, and
the last Theorem of the text for a non-homogeneous system.

11. Show that the linear differential equation
# 7Y Palt gy=R
goes over by the substitution z =e¢* into the linear differential equa-
tion dy
dtz Y (P— 1) e T Qy=R.

Extend the theorem to linear dxﬁerentxa,l equations of the n-th
order.

12. Constant Coefficients. We begin with the case of the homo-
geneons differential equation of the second order,

¢y d2y+ a +By o,

where ¢, 8 are given constants. It was early observed that the
fanction e=* is a solution of this differential equation if m is a root
of the quadratic equation

) m24 2am+ B=0.

For, compute the left-hand side of (1) when y = e™=. Here,
d;
_-'l_._ me", % = mz ena’

and hence

%4- 2¢Z—£ + By = e™*(m? + 2Zam + B).
Thus we ses, for example, that the differential equation
o) d_‘L/ 5 L1 6y=0

jeads to the quadratic
m’-—-5m+6=o,
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whose roots are m, = 2, my=3. Hence two solutions of (3) are e¥*
and ¢, These are evidently linearly independent, and so the general
solution of (3) is
y = Ae* 4+ Be*,
Imaginary Roots of (2). Suppose, however, that (2) has no real
roots, i.e. suppose that, on writing down the formal solution of (2),

m=— a_-t'\/a’—ﬂ,

it turns out that «? — 8 < 0. The roots of (2) are then imaginary,
as the mathematicians of the eighteenth century said. They can be
expressed in the form

“4) m=—a+yV—1, m:-—a—y\/:_j.,

where y=+Vp — «f. The mathematicians of that time did not
hesitate to work with imaginary expressions like the above, even
though they had no clear idea of what they mean, i.e. how to define
them. They reasoned as follows. Since e“t* = e“e* when w and v
are real, the expression

em z — e—M—yz\/:;
must be the same thing as the product
o= eV, L4
and so the question reduces itself to that of finding out what e*vZ
means, where ¢ is a real number.
Now, the mathematicians of that time were very well acquainted

with the expansions of the functions e*, sinz, cosz by Taylor's
Theorem :

22 27’
e¢_1+a;+__2!+3_!+ “ee
. 2, 2
smm:a;__?:!.*.a_ voe

z =
cosz::l—m"FE— eee,

What could be more natural, therefore, than to ask the series what
eVl means? On setting z= ¢/ —1 in the above development
of e* and reducing the result by means of the relations

(V-1p=v-1, (V=1)=—1, (V=Ip=—v=1,
(V=1p=1, (VI = (VST
k=1,2,.; 1=1,2234,
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it appears that ‘
M-_—i—ﬂ-{-f-— sew

+\/_(¢ ——-)

But these are precisely the series for cos ¢ and sin¢. And so the
formal work indicates that we ought to consider e#¥-? a8 equivalent
tocosd 4V —1siné:

()] V=1 =05 ¢ +/— 1sin ¢.

We cannot insist too strongly at this point that we have not
proved the equation (5). How can we prove anything about im-
aginaries before we have a definition for them? We can, however,
act &s if we had proved equation (5) and go on and reduce the ex-
pression for ™ accordingly. We had found that this is to be con-
sidered as the product e~¢™V-1, and hence we interpret e™* in the

light of (5) by the equation:
e = e *cosyx+ VvV —1le*sinya.
Sigilarly, e™F = ¢~ cos yx —V — 1 ¢ sin y2.
Now, the sum of two solutions of the differential equation (1) is,

by Theorem II of § 11, a solution. And the sum of ¢™* and e™, if
it means anything, means the function

2e~* cos ya.
But this is a real funetion, and it may be a solution of (1), in spite

of the doubtful character of its pedigree. Try it and see. Dropping

the factor 2, set
) y=e"co8 yz;

then % = -— @~ cos 1‘46 — ye~**gin yz,

% = (a® — y") e~ co8 yx + 2 aye™* 8in y 2,
a.nd on adding these equations after multiplying the first by B8, the
second by 2, and observing that y* = 8 — &%, we find that

dy dy
Tt 2e +RY=0,

¢.e. the function (6) is proved by direct substitution, to be a solution
of (1).
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In a similar manner we can find a second solution of (1). Sub-

tract ¢ from ¢™*; the result is

2V —1e*sinyz.
It is true that this result is imaginary, but only through the
presence of an imaginary constant factor, 2v/— 1. Suppress this
factor and consider the function
N y= e **sinyz.

On substituting this function into the given differential equation,
»8 was done with the function (6), we find that (7) also satisfies that
equation, and thus we have the best of all proofs that (7) is a solu-
tion — that of direct substitution. For, a function that satisfies a
differential equation is a solution, no matter how obscure its origin
and one that does not satisfy it is not a solution, no matter how
illustrious its pedigree may seem to have been.

We have introduced this bit of eighteenth century mathematics
partly to give a motif for the two solutions (6) and (7); partly to
show how mathematicians obtained true results from working with
VvV —1, long before they knew how to define that number. They
divined its importance, but they did not yet have the vision to give
it existence through definition, as is seen from a remark of Leib-
niz in the year 1702*: ¢ Die imaginiren Zahlen sind eine feine und
wunderbare Zuflucht des gottlichen Geistes, beinahe ein Amphibium
zwischen Sein und Nichtsein.”

Equations of the nth Order. The method can be extended at once
to the equation

n—1.
® T pa T+ ey =0,

where the «’a are real constants. On substituting y = e we find
that this function is a solution provided m is a root of the algebraic
equation
C)] mr+amtt o o, =0,

If this equation has n real and distinet roots, m,, :--, m,, the
general solution of (8) will be
(10) y=ce™ + o 4 c g™,

If one of the roots of (9) is imaginary,

m=p+gv-1,

‘% Klein, Elemeniarmathematik vom hheren Standpunkte aus, 8d ed., vol. I,
p. 61, .

[
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thert a second root will be the conjugate imaginary,
' my=p—gvV—1
Corresponding to these roots we shall have two real solutions,
{11) ) €%* 008 g%, &*° gin ga.
The case of equal roots of (2) or (9) will be treated in the next

paragraph.
Example. Solve the differential equation

Py . d
é + Ewy =0,
Here, equation (9) becomes
md 4+ m = 0.
The roots of thia equation are -

my = 0, my=+vV—1, my=—vV—1
Hence e™ =1 is one solution, and two further solutions are
€72 08 q¥ = COS 7, e’*sin gr = sin &,
The general solution is
y=A4+ Beosz 4 CUsinz.

EXERCISES
Solve the following differential equations.
1. g-—y=0. Ans. y= Ade* 4+ Be™
2. g—%+y=0. Ans. y= Acosz + Brinaz,
s. %+3%—10y=0. s %+%—-y=0.
5. %+4%+13y=o. 6. %+g—£+y=0.
7. %+y=0. 8. %’3—%+%—y=o.
9. %Ly;-o, 10. g+1ag+36y=a
1. gz+%=o. 12. %—13%+36y=0,
18, %—y-o. 14. :’—g—%-o.
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18, Show that onae solution of the differential equation

Yy W ey

where a,, -+, ,, € are constants, and «, + 0, is the function y = ¢/a,.
16. Obtain by inspection one solution of the differential equation
Ty Lo
w0 4,

and hence solve the equation completely.

17. In the case of a simultaneous system of homogeneous linear
differential equations with constant coefficients, as

dy_ a_
dx..Ay+Bz, dx_0y+Dz,

it is reasonable to try for a solution of the form:
y = Ae™, 2z = pem=,
Show that two such solutions can be found if the equation
A—m B -0
C D—m
has two distinct real roots, and determine the ratio, A/
Apply your results to the case:

d; dz
d-?z=6y——4z, —=3y—-2-

dz
Ans. The complete solution is:
y=Ce®+4Cse*, z=Cie®+3C,e™

18. Develop the theory for the case that the quadratic in m,
Question 17, has imaginary roots.
19. Extend Questions 17, 18 to the case of a system of three equar
tions,
ﬂ: Au 4+ Byv + Cw
li@ 4

g—i= A,u + Bgv -+ Cg‘w,

o
:11—:= 4su 4+ Byv 4+ Cyw.

Henoe generalize to the case of n equations.
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20. Solve the differential equation (cf. Ex. 11, § 11):

mﬂi‘fﬂ-;- 8z~1+ 12y =0,
AM Y o= 01.’!:"'-1-0,:3"

138. Continuation. Equal Roots.* If equation (2) of §12 has
equal roots, then each is equal to — a, and y; == e-** is a solution of
the given differential equation.

We can guess a second solution by considering the case that the
roots are not quite equal, one being — a and the other —a+ A
Let

3—/- - e—uﬂ-hz.

Then Ll=e—n h- 1

is a second solution of the near-equation, no matter how small  be
taken. Now, this function is nearly equal to ze-** when k is small.
So we are led to try this function, and it turns out on substituting it
that it does satisfy the given differential equation.

Thus we find as the general solution

y=e"°"(4 4 Bz).

If n > 2, equation (9) of § 12 may have more than two roots equal.
It is not hard now to guess by analogy what the solutions will be in
this case. If m be an I-fold real root, then

h=em Y=z, - -+ o Y= ai-lgme

will be { linearly independent solutions. If, on the other hand, m is
imaginary: m =p 4 ¢V —~1, then p —¢gv —1 will also be a root,
and we have each of these roots counting 7 times. The functions

Yape1 = 2" €P° COB g2, Y2 = x*€** 8in ¢z, k=01, l“l;

are here 2] linearly independent solutions.

The case that the m-equation for a simultaneous system of the type
of § 12, Fxs. 17 and 19, has equal roots is more complex ; cf. Goursat,
Cours danalyse, Vol. I1, 2d ed. (1911), Chap. XX, § 420, p. 483.

]

#This case is unimportant in practice ; and yet it is necessary to treat it if
the theory is to be complete. The student may safely postpone this paragraph
till he needs to nse it.



DIFFRRENTIAL EQUATIONS 343

. EXERCISES
1. Find one solution of the differential equation

B3P 43%_y=o
by the method of § 12, and prove by direct substitution that we* and
a?e” are also solutions. What is the general solution ?

Ans. y=(cy + 1 + caa?)e”.
" 2. Find two solutions of the differential equation

d dy _
dﬂm‘+2d_mi+y_0

by the method of § 12, and prove by direct substitution that wsin®
and zcosx are also solutions. What is the general solution ?
Ans. y = (a + bx) cos z + (¢ + dz) sin .

Solve completely the following differential equations.

dy Py _, ¢ B Dy
3. d.::‘+d1:3— ) ’ da:‘+dx2—0'
|
By dy _dy =0 6 ﬂ——2ﬂ =0
b st e ¥ Cw Ca Ty

14. Small Oscillations of a Bystem with » Degrees of Freedom.
We treat here only that part of the problem which relates to the
integration of the differential equations involved.* Let the kinetio
energy, T, and the force-function, U, be given by the equations:

T=30.gq+ Ty U=—2b.09+0 {j42f
The two quadratic forms are both definite,and a,;, b,; are constants.
Lagrange’s Equations :

4aoT_IiT _ 22U
dtog, g, oqu
give:
m audl + - + G gn =— (Gu @ + - + biaa)-
By means of a suitable linear transformation,
@ 6= papr+ ==° + PunPm k=1, .4n

the two quadratic forms can be reduced to the normal form : {

* C1. Appell, Mécaniqus rationelle, vol. 2, p. 343.
1 Bocher, Algebra, Chap. 13,
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P+ gl —rpl- e =R, 0<n,
Equations (1) now take on the form:

3 pl=—rip,

The general solution of the system of equations (3) is obvious,
namely : .
(4) D= Ch cos (T,,t + Ph)x k=1,.., n

Hence the general solution of (1) will be:

®) gu=Cipacos(rt+p)+ - +C mco8(r,t+p,), k=1, ., n,

where Ci,---, C, and py, ---, p, are the 2n constants of integration,

From the result just obtained it is now clear how to solve equa-
tions (1) without the intervention of the transformation (2). For,
equations (5) say that the general solution of (1) is put together
linearly out of n solutions, each of the form:

® Gi= MCOS(Tt +p), e, ¢, = A,co8(rt + p).
A necessary condition that (6) be a solution is that the n equations
(7) (bkl_rza‘n)xl‘*“ b +(b,,,.——r2a,m)}\_=0, k=1, ey M,

admit a solution in which the A’s are not all 0. Hence the determi-
nant of these equations must vanish:
bu —ray, -y b, —rlay,

(8) . e

bul - rza'nl) "ty bm‘ - rzann

]
124

If the »’s are all distinct, they form precisely the n positive roots
of (8) and thus (8) is seen to be a sufficient, as well as a necessary,
condition for the r,.

1t is not difficult to show by a limiting process that, when two or
more of the 7, in (3) are equal, these appear as multiple roots of (8),
so that, in all cases, the n positive roots of (8) yield the n quanti-
ties r,.

When r, is a simple root of (8), equations (7), written for r = r,
determine the ratios of the A’s uniquely, and thus, in building up
the gemeral solution (5) out of such particular solutions (6), the
factor of proportionality can be merged with the coefficient C,.

I v = r, is a multiple root of (8), of order m, then m of the A/s
in (7) can be chosen arbitrarily. For example, any one of these m
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A’s can be set m1, and the remaining m ~1 set =0. We are
thus led to m linearly independent solutions of (1).*

We see, therefore, how in all cases to derive from (8) and (7) n
solutions of the form (6), out of which an arbitrary solution of (1)
can be constructed by means of (5).

The variables p, are known as the normal coordinates of the sys-
tem. They are uniquely determined, save as to their order, when
the r, are all distinct; but when some of the 7,’s are equal, an infi-
nite number of different choices is possible.

III. GEOMETRICAL INTERPRETATION. SINGULAR SOLUTIONS

15. Meaning of a Differential Equation. Just as, in Integra-
vion, our first object was to discover the devices by which the
integrals wo meet in practice can be evaluated in terms of the ele-
mentary functions, so here we have studied in this chapter analogous
devices for solving differential equations such as occur in physics
and geometry by means of explicit formulas in the elementary
functions. We came, however, to see that an integral can be consid-
ered from a higher point of view and that the integral of any con-
tinuous function always exists, regardless of whether it can be
evaluated as above ; namely, the area under the curve yields precisely
the integral. Moreover, this area may in any case be approximated
to by Simpson’s Rule, Introduction, p. 344.

In the case of the differential equation

d,
® W f@y)

the situation is similar. Suppose f(z,y) to
be continuous throughout a certain region S
of the (z,y)-plane. Then the equation (1)
assigns to each point (x,y) of § a definite
direction, namely, the direction of the line
whose slope (dy/dz) is f(2,y). We can think of these directions as
indicated by short vectors drawn at the points,

To integrate equation (1) is to find a curve drawn in .S, such that,

* Here, a8 in 50 many other cases in physics, & thorough knowledge of Linear
Dependence is indispensable for an understanding of the subject in hand ; ¢f.
Bdoher, Algebra, Chaps. 8, 4, or better still, Bdcher, Annals of Math., ser. 2,
vol, £ (1901), p. 81.
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at each one of its points, it is tasigent to the vector which pertains
to that point. It would seem likely that such a curve exists through
each point of S. For, if we start at any point (%, y,) of § and go

along the vector at that point to & point (z,, ;) near by ; if from here
we proceed along the vector pertain.

Y H ing to this latter point to a point
o (@ ¥,) & little further on; and if
Pl o We continue this process, we are

ol Fra. 83 thus led to a broken line, whose

slope at any one of its pomts*
differs but slightly from the value of f(x,y) at that point. It is
natural to expect this line to approach a certain curve as its limit
when its vertices increase in number, the greatest distance between
two successive vertices approaching 0. On introducing a suitable
restriction on f(z, y) (a reason for which will appear when we study
singular solutions) it turns out that this is the case; i.e. that there
is a curve, v=d(z),

toward which all these broken lines converge, and that the slope of
this cnrve at each point is that of the vector pertaining to this point.
Analytically this means that the function ¢(x) satisfies the given
differential equation, or

¢' (@) =S [z ¢ (@)]

The condition to be imposed on f(x, y) may be stated in the form
that f,(z,y) = 0f/0y shall exist and be continuous throughout 8.
This condition is somewhat more restrictive than is needed, but it
includes the cases of importance which arise in practice. Moreover,
when this condition is fulfilled, the solution is unique; .. the
neighborhood of an arbitrary interior point of § is swept out just
once by a one-parameter family of curves, no two of which have a
point in common.

We note that the solution depends on an arbitrary constant, g
At first sight it might appear as if it depended on two arbitrary
constants, , and y, It does; and still there is only a one-parameter
family of solutions involved, for we get all the solutions which
course the neighborhood of the point (x,, y,) by holding «, fast and
sllowing y, alone to vary. For example, the right lines which have

# At a vertex, the slopa of one of the lines abutting on it is just right, by
construetion. ‘The slope of the other line is not far wrong.
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w given slope (A = 2, say) are given by the equation

Y=%h=2(@—2), or y=2z+(y—2%)

Thus the two arbitrary constants a, and y, are together equivalent to
but a single arbitrary constant,

b=y, — 2%
Ezample. Consider the differential equation

%=n r = V& F -

Let it be required to find approximately where the axis of z is
cut by the solution which cuts the axis of y one unit above the
origin.

The student should make an accurate drawing on squared paper,
taking 10 cm. as the unit of length and making z,,, — &, = 4}
(i.e. 1 cm. long).

Simultaneous Differential Egquations. A simultaneous system of
the form
d; d
@ 2 =F@y,2), L=ty
can be treated in a similar manner. Let ¥ be a region of space, at
every point (%, ¥, 2) of which the functions F and ® are continuous.
Draw through (x, ¥, 2) a line whose direction components are 1,
F(z, y, z), ®(x,y,2), and lay off a short vector along this line. A

curve,
) y =s), 2= ¢ (@),
which, at each of its points, is tangent to the vector pertaining to
that point, will represent a solution of the given system (2).

Starting at any point (x, %, %) of V, we can construct a broken
line as in the earlier case, laying off first a short distance on the
vector at (%p, Yo, %) From the end, (%, 71, #), of this line lay off
a short distance on the vector pertaining to (%;, %, #); and con-
tinue in this way. The broken line thus formed will approach a
limiting curve, (3), which represents a solution of (2), provided
F(z, y, 2) and ®(z, ¥, 7) admit first partial derivatives with respect
to y and 2z, which are continuous throughout ¥.

The extension to the case of a simultaneous system of n equamons
in n dependent variables :
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.

d,
7‘% = Fl(m) Yo s Yahy o % = F (% Y15 **) Yu)s

is immediate, and the existence theorem holds in that case, too.
Such a system can be thrown into the equivalent form:

dz, - dz, = O
Fy(@yy oy 2)  Famy, -, @) B (21 -y %) ’

dz,
or % = Fi(z)y ~»2,), « « 1 ’at'! = Fy (2, w00y Tp)e

Through each point, (f, .-, 2%) of the region R of the n-dimensional
space, in which the functions F), are continuous, together with their
partial derivatives of the first order, passes one and only one curve,

Ty = ¢,‘(t, z?} haA ) z?.); k=1, seny Ny
provided the functions F), are not all zero at (zf, -+, 23).

18. Continuation. Differential Equations of the Second Order,
and Higher. Consider the differential equation

1 % = F(“” Y %))

where F(z, y, p) is continuous for all points (z, y, p) for which (x, )
lies in a given region 8§ of the (x,y)-plane, and p is arbitrary.
- Through an arbitrary point (z, y) of § draw an arbitrary line, of
slope p. Then (1) determines the circle of curvature of the solution
of (1) which passes through (z, y) and has the slope p. Thus a
small arc of the osculating circle at this point can be laid off, and
we can proceed to build up an approximate solution by means of
such arcs, much as in the earlier case, § 15.

A solution of (1) will be a function, y = ¢ (), continuous together
with its first and second derivatives, and such that its graph has ita
eurvature at each point in agre€ment with (1), or

+x=T&NP) p=%.
a+mt de
If, furthermore, the partial derivatives of F (of the first order)
exist and are continuous, then through an arbitrary interior point
(% %) of 8 will pass a solution of (1) having an arbitrary slope,
Po; and the solution is thus uniquely determined near (2o, #, Po)-
We see, moreover, that the solution depends on fwo arbitrary
constants, which may be taken as g, and py =
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Second Méthod. A second method of treating the differential
equation (1) is the following. Introduce a new wvariable, z = dy/ds.
Then (1) is replaced by the simultaneous system

(2) %g;=zt ' %=F(5ﬂ) y)z).

If F(z,y,2) is continuous, together with its partial derivatives
of the first order, the system (2) will admit a unique solution pass-
ing through (zy,%o,%); §15. Thus the existence theorem for (1)
stated just above is here proved by means of the existence theorem
of § 15.

The method can be extended to m simultaneous differential equa-
tions of orders n,, ny, ---, n,, respectively in the dependent variables
Y1 >+ Y- They are seen to be equivalent to a system of
g = ny + ny + -+ n,, simultaneous differential equations of the type

dz,
dz

and their solution depends on g arbitrary constants.

=@, (27 Zyy t0ny z.), 1i=12 -, 9

17. Bingular Solutions. Consider the differential equation

dy?
1 L =19
@) e y
Nothing could be easier than to integrate it by our ordinary methods.
First, dy VI=a
-(-i—.t =z -y
Next, separate the variables:
de =+ —_EL .
V31—t
Hence r=1 L%y _ F cos~ly +¢
Vi—y
and go, finally,
@ y = cos (z — ¢),

— the “ complete primitive,” as the books call it, containing an arbi-
trary constant, and so comprising all the solutions of (1).

The only trouble with this result is that it is wrong. Not that
the function (2) is not a solution for an arbitrary value of ¢, but in
the assertion that all the solutions of (1) are given by (2) there is
& blunder,
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Let us study the differential equation from the point of view of
§15. Consider the two differential equations

dy_JT—a. n W _visa
® HL=vi-g, ) Be-vi-p

1t is clear that any solution of (i) in a given interval a Sz b is a
solution of (1); and the same remark applies to (ii).
> — NI Equation () assigns to each
//// ﬁ/ point (m y) within the strip
///// R —1<y=<1 of the (z,y)-planes

Fra. 84 positive slope, and to every

point on the boundary (y=1,

y = — 1) of the strip the slope 0. If (2, y,) be an arbitrary interior
point of the strip, there passes through it one and only one solution,
and to the determination of this solution the analysis above applies:

L_iﬂ=-‘/1_ ry v A
dw v ol S,
7
¢=f__jd_y__=-—cos-‘y+0, "
Vi-g Fio. 85
# = —cos~ty 4+ O,
3) 2 = —cosly + cos-ly, + xy,

where each cos—! means the principal value of the function (Intro-
duction to the Caleulus, Chap. VIII, p. 211).

The solution (8) proceeds forward till it meets the line y=1 at
A; and it runs backward till it touches the line y = — 1 at B. The
continuation of this solution to the right of A is the function

y=1,

or the part of the upper boundary of the strip to the right of A.
And likewise the solution is carried backward, to the left of B, by
the function y = —1, or the part of the lower boundary of the
strip to the left of B.

‘Wae see, then, that through every interior point of the strip passes
one and only one integral curve of (i), and this solution is defined
throughout the whole range of values forz, —w <z< +®.

Not so, bowever, with a point (%, y,) on the boundary of the strip.
Buppese go== —1. Then that part of any solution passing through
(@4 ) which lies to the left of @ is uniquely determined; it is
y=—1. But to the right we may proceed along this same liné for
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ever, thus having the solution y=—1, — 0 < 2 < + % ; or we may
leave the line at any point z, = ,, pass along the curve (3) to the
other boundary, y =1, and then continue forevermore on this line,
Thus we see that through any point on the boundary of the strip
pass infinitely many solutions of (i).
Precisely similar results hold for (ii). The solution passing
through a point (zy, y,) within the strip is given

by

Q) % = cos™ly — costy, + @, \ 2
where, as before, the principal value of each \&M
cos! is meant. And this solution continues Fig. 86
along the boundary.

The Solution of (1). We see now how to put together other solu-
tions of (1) than those given by (2). First, the solutions of (i) and
(#)) just discussed are all

o / \ solutions of (1). Secondly,
re) £ we may start with the arc
/ \ AB of a solution of (i),

. Fia. 87 proceed to the right of 4 an

arbitrary distance, switch
to a solution of (i), follow the line y =—1, as far as we like, then
switch to a solution of (¢); and so on.

Do we get, even in this way, all the solutions of (1)? For an
interior point (uy, ¥) any solution of (1) is given either by (3) or by
(4) till it reaches the boundary. For a boundary point (%o, ) any
golution, considered to the right of the point, either coincides with
the boundary for an interval, or it has points distinct from the
boundary in every neighborhood to the right of z,. In the latter
case, it must switch to a branch (3) or (4) to the right of x,, and the
transition must obviously be made at the point . Similarly for
the left-hand neighborhood of a boundary point. The solution of
(1) is now complete.

Example from Physics. Consider a simple pendulum, Introduc
tion to the Caleulus, p. 373. The differential equation of the first
order * ig

d¢
®) - n?(a? — 82), n—\/g—,

* This is the approximate equation for small arcs; but the reasoning applies
equally well to the accurate equation, 1. ¢ (3).
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snd can be written down at once from the principle of Work and
Energy. Suppose that the pendnlum gets stuck when it reaches its
highest point, and lodges there till some one releases it. This may
bappen each time it comes to its highest point, and each time it may
remain at rest for an arbitrary interval of time. The equation of
Work and Energy is the same for this case as for the case ordinarily
considered, namely, (5).

From this it appears that (5) regarded as the mathematical for-
mulation of the problem of Simple Pendulum Motion, is not ade-
quate, since (5) admits other solutions, too. The same remark
applies to many of the deductions given in Mechanics, which are
based on the principle of energy and operate with differential equa-
tions of the first order, which are not linear. On the other hang,
this situation cannot arise when the solution is based on Newton’s
Second Law of Motion and the formulation

@0__9 S
¥ 10. (or = lsm 0.)

This differential equation has only one solution, and that, the solu-
tion of the problem.

18. Continuation. The General Case. The central fact illustrated
by the example of §17 may be stated as follows. The family of
solutions (2) have an envelope, namely, the lines y =1 and y=—1.
An arc of the envelope (a segment of either line) obviously must
also yield a solution of the differential equation; and yet this solu-
tion is not contained in those given by (2).- Such a solution is called
& stngular solution.

We can generalize and say: Let a differential equation of the first
order be satisfied by a family of curves,

@) y=¢(0),
and let these curves all be tangent to a curve
@ y=y¢(2).

Through any point (z, ;) passes a curve, y = ¢(, ¢), of the
family (1); and the funection ¢ (x, ¢,) satisfies the differential equa-
tion in the neighborhood of, the point z = «,. If the curve (2) is not
contained in the family (1), it is called a singular solution.

For example, consider the differential equation

9 _ 3.4
i Syi
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A family of solutions is seen to be
y=(z— o
These curves are all tangent to the axis of z, and this line, y =0,
is seen to be a solution of the given differential equation. But it
is not one of the above family ; it is a singular solution.

Clairaut’s Equation. Consider the differential equation
dy dy
3 =24 (2
©) y wd:v f(d:v)’

where f(p) is continuous, together with f'(p) and sf"'(p), and
J" (p) # 0.

The “ general solution” (1) of (3) can be written down at sight:
@ y=cz+J(0),
where ¢ is an arbitrary constant. Thus we have a family of straight
lines.

This family, however, has an envelope; for, differentiate (4) par
tially with respect to ¢, Chap. VIII, §1:

0=2x4f'(c).
Thus the envelope is defined by the equations
Tr= — f ! G),
®) D
y=—cf'(c) +S(0)-
This curve represents a singular solution.
dy 1/dy\*
le. =¥ _ (%Y,
Ezample y wdm 5 (da;)
Here, the general solution corresponds to the straight lines
y=cx —}c%
The singular solution is:
X = Cy _1/ = %Cz,
or the parabola:
2 Y= x2,

IV. SOLUTION BY SERIES. INTEGRATING FACTOR

19. Bessel’s Functions. Zonal Harmonmics. The problems of
Mathematical Physics lead to certain homogeneous linear differen-
tial equations of the second order with variable coefficients which
are very simple functions. The most important equations of this
class are: .
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(a) Beasel’s Equation:
1dy (1 -"\y=0;
%“"E dw+(1 w’)y 05
() Legendre’s Equation:

%{(1_mz)g£}+m(m+1)y=0.

The first of these cannot be solved in terms of the elementary
functions. It defines a new class of functions, the Bessel’s Func-
tions of the First Kind, denoted by J,(z), and those of the Second
Kind, denoted by K, ().

The Series for Jy(z). On setting n =0, Bessel’s Equation be-
o @y 1dv o,

da?  zdz

Let us see if we can obtain a solution of this differential equation
in the form of a power series,

@) Y=+ T+ az® 4 .
Writing (1) in the form
TY W oy =
@) 228+ Moy =0,
we compute the left-hand side of (3) by means of (2):*

2T = 2.100+3-20,8 4 - + @ +2) (0 +Dayei 4 o

%=al+2a,z+ Jazz? 4 - + (n+ 2)a, 2 4 -0

XYy = Gy + a0t 4 oo + a, et 4 ...
On adding these three equations together we obtain a single

power series in z, whose constant term is a;. The coefficients of all
subsequent terms are given by the formula ;

m+2)(n+a,s+n+2)a,.: + a,=(n+ 2)%a,.2+a,
Set each of these coefficients equal to 0; thus

1
(4) 0 = 0) Apyg = — ma..

% We sasunme here without proof that a power series can be differentiated term-
by-term, as if it were a polynomial, — The object in writing the general term aa
the ons in g+, rather than as the one in z», ¢ to obtain a somewhat simpler form
of the relation between the coefficients of (2).

4
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The firat coefficient in (2), namely, a, is arbitrary. From (4) we

find ¢
1 1
“z=—:2—2%, ‘14=§;4“;¢o; ay = 1

TEpe™ Tt

Furthermore, since a, = 0, it follows from (4) that a, = 0, a; = 0, ete.
Each a, is thus seen to contain a, as a factor, and since we do not
care particularly what constant factor is multiplied into a series (2)
which yields a solution, we will set @y =1, (2) then becomes the
geries which defines the function known as Jy(z):
2 ot a8
® @ =1l-Gtps mae’

This series converges for all values of z, and it converges rapidly.
The series for J,(x) and K,(z) will be found in Peirce’s Table of
Integrals, p. 87. They can be verified by direct substitution in the
above differential equation (a). When » is not an integer, J, ()
and J_, (x) afford two linearly independent solutions of (a), and there
is no need of introducing a function K, () (which in this case is not
defined). But if n is an integer, J, (z) and J_, (%) become linearly
dependent, and K, (z) is needed to furnish a second solution.

Zonal Harmonics. Legendre’s Equation, (b), can be treated in a
precisely similar manner. If a solution is assumed in the form of
a power series,

Y =08y + a1 T+ a2 + -1y
it is found that the relation

(1 + D)[(n + 2)Gurs — na,] + m(m + Da, = 0,

_a+)—mm+1)
or b A D +2) "

holds for n=0,1, 2, ..., The coefficients a, and a, are arbitrary,
and we get two linearly independent solutions by setting first one
of these coefficients, and then the other, equal to zero.

When m is a positive integer, or zero, one of these solutions re-
duces to a polynomial. For the coefficients a,.s) @uyy, -+ are seen
to vanish, and thus one of the solutions breaks off with the term
@,2™ The other solution is not a polynomial.

Let the polynomial solution be arranged according to descending
powers of x:

B @™ + Qp_g T2 4 oo
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The coeficients can be computed in terms of a, by reversing the

last formula ; thus

_ m(m— 1
22m—1)

m(m—1)(m—2)(m—3)

2.4 - @m—_1)(Zm—38) ™

It turns out to be convenient to choose as &, the number

_@2Zm—-1)@2m—3)-.-

m!

Ogyg == Oy

Oy ==

The polynomial thus arising is known as a Zonal Harmonic or a
Legendre’s Coefficient, and is written as P, (x) ; ¢f. Chap. XVI, §§ 5,6:

_@m-12m—-8...-.3-1] | mm—-1) ..
Pulm) = ml {”” sem—1)"

+pE=Dmedn -9 ..

2:4-2m—-1)2m~ 3)
In particular,
Py=1, P=z P=}0B82-1), P=}022-32).

20. Integrating Faoctor. Let M =f(x,y) and N = ¢ (z, y) be two
functions which, together with their partial derivatives of the first
order (in particular, M /9y and dN/dx) are continuous throughout
a region 8§ of the (z, y)-plane. The expression
(¢3] Mdz + Ndy
will not in general be the differential of any function u = F(z,y),
since for this to be the case we must have oM /Oy =0N/ox; cf.
Chap. XT, § 7.

1t is, however, conceivable that, on multiplying (1) by a suitable
' factor, p = w(®, y), the product

@) p(Mdz + Ndy)
may become an « exact differential” . *
du = pMdz + pNdy.
® The following treatment presupposes entire familiarity with the develop-
ments of Chap. X1, §§ 1-7. This is not a technicality. There is no short cut

to the integrating factor, whereby an understanding of the subject matter of
thoes peragraphs can be avoided.
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That such a function, u = F(,y), exist,.it is both necessary and

guficient that
317'

oz +

a dy=pde+dey,

or
® F.=pM,  F,=pF.
A pair of funetions, ' and p, satisfying this last pair of equations
can be found as follows.

Let (%, ¥ ) be a point of 8, in which not both of the functions
M and N vanish. Suppose N(#zy,y,) +0. Then the differential
equation

S dx N
admits a one-parameter family of solutions which course the neigh-
borhood of this point (cf. § 15), and which can be expressed in the
form:
(4) F(=y)=0,
where F is continuous, together with its first partial derivatives,
and F,+ 0* The slope of the curve (5) at an arbitrary point
(x’ Y ) is dy _ _F,

dx_ F,

dy M

But dy/dx is also given by (4). Hence at every point (z,y) of § we
have

F.__M
© =%
Let
) p=%, or F,=pN.

It follows, thef, from (6) that F, = p M, and the proof is complete.
The factor p is known as an dintegrating factor. There is an
infinite number of such factors. Thus in the case of

ydr — xdy
it is evident by inspection that

are all integrating factors,

* The proof of this existence theorem is given in the treatment of the theory
of differential equations.
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Let u be the function corresponding to the partiedlar integrating
factor p; let o be any second integrating factor, and let v be the
function corresponding to it :

dv = e Mdz + e Ndy.
ou ou .
Then 2 = o M, % =pN;
ov ov _
% = O'M; -é!-; =coAN.
' (%, v
Hence 1Y) =
. 9(z,y)
and v = Q(u).
We now infer that
o=0'(x)p
For g;l=n'(u)?l;, or  oN=0'(wpk,
and N 0.
Conversely, let f(u) be any continnous function of . Then
o=f(w)p

will be an integrating factor, For

(%] @

fo-Mdz+aNdy=ff(u) {pMdz + pNdy } =Jf(u)g%"d3,
(o, %) (a,8)

and thus the first integral is independent of the path in any simply
connected region. It defines, therefore, a function ¥, and

oy __ _ _
m=oM, =oN, v = F(u) —ff(u)du.

Three Variables : Pdx + Qdy + Rdz. Thatan integrating factor,
p, should exist in this case it is necessary and sufficient that

2(R)_2(Q) 2(P)_2(R)  2(Q) _3(pP).
oy oz’ 03 oz ’ ox Oy

These conditions cannot in general be fulfilled. It is readily seen
that a necessary condition for the existence of an integrating
factor is :

OR_2Q), o(2P_0R\, n(2Q_0P\_
®) P(@y oz +Q(3z oz +R(3w ay) 0.

This condition can be shown, conversely, to be sufficient ; Goursat,
Cours d'analyse mathématique, vol. 2, § 442.
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EXERCISES
1. Show that all the integrating factors of
yds — zdy

are given by f(g) . % , where f(u) is any continuous function of u.

2. Determine all the integrating factors of
(2y + cosz)dz — dy.
3. The same ’question for
(Tz—5y)dx + (3= + 2y) dy.

V. PARTIAL DIFFERENTIAL EQUATIONS

21. Nature of the Solution. The simplest partial differential
equation one can well imagine is

ou
1 —=0
( ) az ’
where u is a function of the two independent variables (z,y). Its
most general solution can be written down at sight:

where f(y) is any function of y whatsoever, continuous or discon-
tinuous — even discontinuous for every value of y.*
A further example is the partial differential equation:

?u
@) PRk

Since this differential equation says that
0 [ou
g [ouN_ o
ox (33/) ’

it is seen to come under the case just considered under (1), and so
du
@ A C)

is a first integral, f(y) being arbitrary.
But here we meet with a difficulty, for we cannot go further with
a function f(y) which cannot be integrated. We are thus compelled

# For example, f(y) might be =0 when y is 8 rational number, and =1
when y is irrational.
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here to restrict the function f(y) at least to being integrable; we will
require that it be continuous. Lef, then,

)= [16)a.
And now
® v =F(y) + &(z),
where & () is wholly arbitrary.

Here, however, we meet still another difficulty, for if & (z) ca.nnot

be differentiated, then Pu Pu

byoz” tady’
and we are thus led to distinctions which it is embarrassing to have
to make,

In order that our attention may not be distracted at the oufset by
details which obscure the things of first importance, we will agree to
consider only such solutions of partial differential equations of the
first (second) order as are continuous, together with their first (first
and second) partial derivatives, throughout a region § of the (z, y)-
plane; or at least throughout each of a set of regions, 8,, Sy, -+, into
which the given region § can be cut up.

Thus we should demand that the functions F(y) and & (x) in (5) be
continuous together with their first and second * derivatives, except
for isolated values of y and =, or along certain curves.

It will be observed, in the foregoing examples, that the solution of
a partial differential equation of the first order involves one arbitrary
Junction, and the solution of one of the second order involves two
arbitrary functions. This is typical for the general ease, and is
analogous to the fact that the solution of an ordinary differential
equation of the first order involves one arbitrary constant, the solu-
tion of one of the second order, two arbitrary constants.

22. Linear Partial Differential Equations of the First Order.
Consider the differential equa,tion
83
where 4, B, C are any three continuous functions of (z, ¥, £)

&1t happens that, for this particular differential equation, no assumption
about the second derivstives is needed. But in the transformationsof (8) eon-
sidered below, the second derivatives enter.
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throughout a region ¥ of space,-4 and B not vanishing simul
taneously. Let
@ z2=F(x,vy)

be a solution of (1). The direction components of the normal to the
surface (2) at any point are: 0z/0x, 0z/0y, — 1. On the other
hand, to each point of ¥V corresponds a definite direction whose
direction components are 4, B, C. And now the given differential
equation says that the latter direction shall always lie in the tangent
plane to (2).

This geometric fact gives us a hint as to how to integrate (1).
The geometric picture of a region of space, to each point of which
a direction is assigned, is one we have met before. It suggests pro-
viding each point with a little vector drawn in the prescribed diree-
tion, and then seeking a two-parameter family of curves that just
fill out the region, each curve being tangent at every point to the
vector pertaining to that point. These curves will be defined
analytically by the simultaneous system of ordinary differential
equations,

dy B dz _C
) de A’ de A’
de_dy _dz,
o A-B~C
Their equations, therefore, can be written in either of the forms
(4) y = f(=, %, Yo, %), . 2= (T, Ty, Yo, zo);

@) z=hL2,Y%: %), Y=50% Y %) 2=Si(t %, Yo 2)-
These curves are known as the characteristics of the differential
equation (1).

Let I be a curve (open or closed) drawn in ¥ and not coinciding
along any arc with any of the curves (4) or (4'). Through each
point (zy, ¥, %) of T' passes a curve (4) or (4'), and the one-parameter
family of curves thus obtained forms a surface,

(5) 2=® (m; ?/)r
a8 will be shown presently.

This surface (5) is an integral surface of (1). For, its normal
at any point is perpendicular to the particular curve (4) or (4')
through that point. The direction components of the ourve are
A, B, C; those of the normal are &, &, —1. Hence (1) is
satisfied.
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Analytically this surface is expressed as follows. Let I' be given
in parametric form by the equations

() 2 = ¢(u), ¥ = x(u), z = w(u).

And now substitute in (4') these three functions for «y, y, %, re-
spectively :

e=fi{t, (W), x(¥), o(W), Y=Sal, y(u), x(u), 0(w)), z=ete.

Conversely, any solution of (1) yields a surface z = F'(z, y) which
is swept out by a one-parameter family of curves (4'). For, through
each of its points passes a curve (4'), and any such curve lies wholly
in the surface, as the student can readily prove for himself.

‘We observe that the general solution of (1) depends on one arbi-
trary function. At first sight there seem to be two (or even three)
such functions, corresponding to I But if we cut an arbitrary
solution of (1) by a plane, this plane curve is sufficient to define all
the solutions near the given one, and a plane curve is equivalent to
a single arbitrary function.

Proof of (6). In (4) hold wx, fast, and for simplicity let 2, = 0.

Rewrite (4):
) ¥ =g (%, %, %), 2 = h(2, Yo, 2)-
Then
® 90, %0, %) = Yo, R (0, %o, 20) = %
Hence, when 2 =0,

d_y, oo, Zoo 2o
® T B dm

Let the curve T be given as follows:

(10) zo=m(}/o), m:—-%no,

where » is continuous, together with its first derivative. On substi-
tuting for 2, in (7) the value w(y,), it is seen that the first equation
can be solved for y,:

(11) Yo=x(=,¥),

where y is continnous, together with its first derivatives. Eliminate
% and 2z, from the second equation (7) by means of (10) and (11);
thus (5) resulta.

In equations (4'), regarded as applying to the neighborhood of a
point (%, ¥,, %), the parameter ¢ can always be taken as @, when
A0, and as y, when B+ 0, at that point. Thus the foregoing
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proof is general if A # 0; otherwise all that is necessary is to allow
z and y to interchange their rdles.

23. General Partial Differential Equation of the First Order.
Consider the partial differential equation

@) F(z,y,2,p,9) =0, P=g‘:, =2§,

where F is continuous, together with its first partial derivatives. We
assume that (z, y,2) is a point of a region V of space, that p and ¢
may have any values whatever, and that F, and F, do not vanish
simultaneously.

Let (2, yo,2) be held fast, and consider the lines through this
point, whose direction components, p, g, — 1, satisfy (1). These
lines sweep out a cone (N), and their normal planes through (=, ¥o, %):

@ z—z=pE—2)+9(¥—wn)
envelop & cone (7)), whose generators are determined by (2) and the
further equation (Chap. VIII, § 4, Ex. 2):

)
0=£@—m+w-w

or

3 T— @ _Y—1%

( ) P Q ’

the notation here and later being:
oF oF oF oF oF
—_— A —=— —_— —_— —_—== k.
ox ! oy ot oz Z, op 5 g -

Consider now a solution of (1),
4) r=2%(Y), the surface 8.

The tangent plane to S at an arbitrary point (%, ¥, %) is given by
(2), and the generator of (7) which lies in that plane lies also in the
plane (3). Thus a direction is determined at every point of §, and
these directions can be visualized by short vectors, which may be
curved so as to lie actually in S.*

*We may think of the cone (T), roughly speaking, as tangent to § at
(%o, o, o) along the direction above determined. More precisely: let an
arbitrary curve, T, be drawn on § through (%o, ¥, %), and let P be a neighbor-
ing point of T, Consider the distance, {, from P to the cone (T). If T have,
in particular, the above direction, then ¢ will be an infinitesimal of higher order
than if T' bas a different direction.
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' We have here a geometrio picture closely similar to that of §15,
and we should expect to find the surface 8 swept out by a one.
parameter family of curves, each of which is tangent at every one of
its points to the direction pertaining to that point. This is precisely
what happens,

The curves ' of this family are determined as follows* The
differential equation

d_ dy
(5) F=Q’

where 2z is given by (4), has as its solution in the neighborhood of
the point (zy, y) & one-parameter family of curves which sweep out
this neighborhood just once. And now the cylinders on these curves
as directrices, with their elements parallel to the axis of 2, cut out
from 8 the curves (), and these sweep out the part of S that lies in
the neighborhood of (2, ¥, z,) just once.
For convenience, introduce a parameter, ¢, setting each side of (5)
equal to dt. Thus
dxe = Pdt, dy = Qdt.
Furthermore, along any one of these curves C, we have
dz = pdz + gdy = (pP + qQ) di,
and so (5) can be extended to read:

dez _d dz
6 w0y — =l
©) P-QpP+4Q
We can go further and compute dp and dg along the curve C. We
have :t

dp = rda + sdy, dq = sdx + tdy,

or
) “dp = (rP +3Q)dt, dg = (sP +tQ) dt,
& _op s ”z_ __2 =2 t=§’1_§g.

where 1= = o’ S owoy by ox P oy

#1t is assumed that (Zs, %0, 20) is an interior point of ¥V ; that & (z, y) is con-
tinuous, together with its partial derivatives of the first order, throughout
the neighborhood of the point (24, %0); M 29 = ¢ (2o Yo)r Po = PulZoy Yoo
go = ©,(%', ¥o); and that the partial derivatives of ¥, not only of the first, but
also of the second order, are continuous functions of the five arguments in the
neighborhood of (%o, ¥o, %0, Po, g0). Finally, let (Chap. VIII, § 4, Ex. 2)

FuqPr1—2F, PQ+F, Q3% 0. .

4 It happens that tha letter ¢ is vsed here in two senses ; but no confusion,

will arise.



DIFFERENTIAL EQUATIONS 385

On the other hand, equation (1) is satisfied identically in zand y ,
by the function (4). Henee, differentiating (1) partially with re-
spect to  and y successively, we have:
® { X+pZ+rP+3Q=0,

Y+qZ+sP+1Q=0.

From (7) and (8) it appears that
dp _ dg _
X+pZ+dt_0, Y+qz+dt_.o.

Thus equations (6) can be extended once again and we have:

©) de _dy__ _dz  _ —dp _ —dg
P Q pP+9Q X+pZ Y+qZ

This is a system of five total differential equations in the five
dependent variables «, y, #, p, ¢ and the independent variable &
They define a family of curves in the five-dimensional space of the
variables 2, ¥, z, p, ¢ :

= df.

z = fi(t; %, Yos 205 Do, Qo)

¥y =Ji( “ )
19 z = fi( “ )
=1 « )
q p— j‘s( [{1 ).

It is assumed that ¢ =0 corresponds to 2 ==, Y=Y, ', 1=

Characteristics. Equations (10) define what is known as the fam-
ily of characteristics of the given differential equation. The first
three of these equations determine a curve C' through (%, Yo, %)
and the last two assign to each of its points a definite normal (with
the direction-components p, g, — 1) or a definite tangent plane per-
pendicular to this normal. We can combine both these conceptions
into one composite picture by thinking of the curve C as embedded
in a parrow strip of surface such that, at each point of C, the tan-
gent plane to the surface has the orientation belonging to that point.
Such a strip is called a characteristic strip. We shall say that it lies
in the surface S, and we can think of S as made up of a one-param-
eter family of such characteristic strips.

Thus far, a definite solution (4) of (1) has underlain the entire
treatment. We will begin now at the other end, starting with an
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.entirely afbitrary family of characteristic strips, and inquire bow
the most general solution of (1), of the type (4), can be built up ot
of them.

24. Integration by Characteristios. Let #:(a, b, ¢, a, 8) be any
point in the five-dimensional space of the variables (=, y, 2 p, @)
such that 4 : (a, b, ¢) is an interior point of Vand F(z, y, % p, ¢) ia
continuous, together with ite partial derivatives of the first and
second orders, throughout the neighborhood of #. Moreover,

F(a, b0, 8)=0, but P=F, @Q@=F, notboth0in%.

Then the system of differential equations (9) defines a four-parameter
family of curves given by (10), which sweep out the neighborhood
of % just once, (%, ¥, %, Los Q) being an arbitrary point of this
neighborhood.

Let C be the curve in ¥V which is represented by the first three
equations (10) and, in particular, let Oy be the curve C' which cor-
responds to the initial values 9. Then any sclntion of (1),

11) z2=Y¥(z,y),

where ¥ (2, ¥) is continuous, together with its partial derivatives of
the first order, throughout the entire neighborhood of the point
(a, b) and

c=¥(a, b), a=¥,(a, ), B=1Y¥,(a,b),

must contain the curve Cy and the corresponding characteristic
strip. For these are uniquely determined by the initial values cor-
responding to %.

Let Ty be a plane through A4, whose normal has the direction-
components (&, 8, —1). Then Cy is tangent to Ty at 4.

Let D be any curve through 4 tangent to T there, but not tan-
gent to Cy:
D: z =y (u), Y =y2(vw), 7=y (u),
where y,(u) is eontinuous, together with its first derivative, and
not all the ¢/ (0)’s vanish; moreover,

(12) ¥ (0) = a4 (0) + B¢4(0).

Hence y{(0) and y}(0) are not both 0.
We can now state the fundamental existence theorem relating
te (1).
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Existewcs Trmorem. There ewists one and only one solution
of 1) F(zy 9, 2,0 ) =0, .
which satisfies the conditions imposed on the function (11) and is such
that the surface represented by (11) contains the curve D.

In order to prove this theorem we show how a one-parameter

family of characteristic strips may be picked out of (10) by means
of D so as to sweep out the solution in question.

Determination of py, ¢ 1f a solution such as is demanded by the
theorem is to exist, then the values of p and ¢ along D, or p, and g,
must satisfy the two conditions:

(13) { Fys(w)y ¢2(u), ¢s(w)y 2o, 2]=0,

$1(w) Po + ¥ () go = 3 (w),
the second being obtained by observing that (11) is satisfied identi-
cally along D, and that, at any one of these points,

Y, [V (), ¥2(w)] =po, ¥, [ (u), Y2(W)]= g
Can equations (13) be solved, however, for p;,¢q,? This question
is answered in the affirmative by the Implicit Function Theorem,
Chap. V, §12. For, first, the above equations hold by hypothesis
when =0 and p,=a, gy=pB Secondly, the Jacobian of the

functions F and
H= #‘; _Po"’l’. - Qolﬁé,

MR H) __| P Q =—(a£¢'—?ﬁ¢’)
3 (Do, 90) oo a’t o

is not zero, since its vanishing would mean that the projections of
Cy and D on the (z, y)-plane are tangent at (a, b).
Denote these functions as follows :

Py =¥ (w), Qo = s ().

These five functions, ¢,(v), then, are the values which 2, ---, gy,
shall have in (10). The first three of them are as general as the
curve D; the last two are a direct consequence of the choice of the
first three.

Restatement of the Conditions for y,(u). It is useful to restate
the conditions imposed on all five functions y,(v) independently of
the curve D. Let

(14) =1 "), yYo==iy (“); n=vy;(u), Po=W4 ¥, Q= s (w)

namely,

fosl), wasl)
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be continuous, together with the first derivative, in the neighborbood
of the point v=10 and take on respectively the values a,, ¢, @ 8
there. Let

(©)  F(xos Yos %0, Doy Z0)=0, u=u;
) g; p2:+q§3, t=0, u=u;
(15)
P Q
@) |ow oy |%0, t=0, u=0
ou ou

In (¢¢) and (i) =, y, .-+, g are given by (10), the functions z, «-,
go being replaced in f, by ¢, (w), -+, s ().

The theorem then is that the first three equations (10) define a
surface which, represents a solution (11) of (1).

Proof of the Theorem. We observe that equations (10), in which
the substitution (14) has been made, give:

oz °q _ v )
(16) n=D " 5=—Y-4% by (9);
2| _ gy, -, | =y
(17) ou r=o - ',ll (u)’ H ou i - .,’5 (u)'
Condition (iii) is thus seen to be tantamount to
o(z, y) = =
(18) 3G, u) = 0, t=0, u=0.

It follows, then, from Chap. V, § 12, that the first two of the equa-
tions (10) can be solved for ¢ and u in terms of z and y, and that the
first three equations (10) consequently represent a surface .S:

(19) z=¥(, y),
where V¥ is continuous, together with its partial derivatives of the
first order. Moreover, S contains both curves, Oy and D. It re-
mains to show that the function (19) satisfies the given differential
equation, (1).

The derivatives of this function are given by the formulas (cf
Chap. V, p. 150, Ex. 31):

O(zy) /o(z9) _ag\m,z) oz, ).
b9 =50 u)/ iy OV=50/ 56w
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Consider, on the other hand, the equations

b 0
20 ot ot ot
(20) 9z _ 0z Oy
Bu—pau qau

If these be true, then
‘I’l =P y ‘I'y = q!

and the proof is complete. We proceed, therefore, to establish
equations (20).

The first of the equations (20) is true by (16). To prove the
second, let o o 2

Ul W)=Z—pz”— ¢34

When ¢=0, U=0 by (15), (iY). We wish to show that U is 0
for all values of (t, »). This can be shown as follows. We have:

oU__ 0% o2z 0%y opdx g0y

% e Paira Tia " 5i7u " 01 ou
Differentiating the first equation (20) with respect to w, we have:
oz 822: Oty opoxr 0qdy

“oudt Touoe Youst ouot oudt
On subtracting this equation from its predecessor and reducing
by means of (16), i.e. (9), we have:
=X +p0)Z+ (T +eD) L+ PR 1 QY

Fina.lly, differentiate (1) with respect to u:
oF 0 oy
ou
On subtracting this equation from the preceding one and reducing,
we find :

0="=X24 ¥l +7 +P13+Qi

oU _
—=—ZU.
P U
It follows that, if we give to u an arbitrary value and hold it fast,
and if we now integrate with respect to ¢,

4

U= er-éfzw

But Us= U(0, )= 0. Heunce U is identically 0, ged
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Remayrk. The usual treatments of this subject follow the historie
order of development and begin with the “complete integral ”” and
the ¢ general integral,” arriving late (if at all) at the characteristics.
Valuable as the historical order is in most subjects in mathematies,
the present one is a distinet exception, for the *complete integral ¥
and the * general integral ¥ are artificial, and do not afford an easy
or a natural approach fo the subject. The characteristic strips are
the key to the situation, and by means of them the “complete inte-
gral ” and the “ general integral ” can be best explained ; cf. Goursat,
Cours d’analyse, vol. II, 2d ed., 1911, p. 593, and Goursat-Bourlet,
Legons sur Pintégration des équations aux dérivées partielles du premier
ordre.

25. Extension to the Case of n+1 Variables. The foregoing
treatment admits extension to the case of partial differential equa-
tions of the first order with n independent variables:

(1) F(2yy coey oy 2,01y 24y Pp) = 0, D= 5.
"’b

ef. Goursat, cited in § 24. The analogue of the curve D is a manifold
of n — 1 dimensions:

»

D: 2=y, ooy Upa)y Ty = iUy, ooy Up)y k=1,..,n
which shall not be tangent at 4 to the curve Cy:
P ... P,,
% ..
Fuy 'au{ =0
P41, ¢
Gty Oy

The functions py, .-, p, are determined along this manifold, and
substituted, together with the ¢,, in the equations which correspond
to (10) The requirements (15), (ii) and (i), now become:

("‘)314 plazl+p,551+ +p,,a t=0,u=y k=1,..,n—1
P,

P,, !
(‘“i) 3u1 ouy * 0.

o
u’—mv\ﬂ—-;n\as-.)— b
o _.

v .
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It in then shown that the function
? 0 A
Uity 1y ooy %py) = a_,‘%"‘pl'a;% — vt — Dy z:. ’
where k is any one of the numbers 1, ..., n — 1, satisfies the relation

o,

e zZU,

t
Hence U,=U} e"{”‘,

where (uy, +++, u,—) i8 arbitrary, but fixed with reference to the
integration. But U? =0 by hypothesis. Hence U, vanishes iden-
tically.

Thus is proved the theorem that there exists one and only one
solution of the given differential equation of the form

2= V(2 -, T,),

where ¥, together with its partial derivatives of the first order, is
continuous throughout the complete neighborhood of the peint
(ay, -+, @,), and where the manifold here represented contains both
Ou and D,

26. The Equations of Dynamics. It is the theory of the solution
of the partial differential equation (1) or (21) by means of the char-
acteristics and the so-called “complete integral” that forms the
foundation of the treatment of the motion of a material system with
n degrees of freedom according to the methods of Hamilton and
Jacobi. The completion of the mathematical theory is found in
Goursat. L. ¢. (§ 24 above). The dynamical problem is discussed in
Appell, Mécanique rationei.>, vol. I, 2d ed., p. 550, and vol. II, 2d
ed., p- 407. These methods have recently again come into promi-
nence through their use by *L.e physicists in the study of the atom;
cf. Sommerfeld, Atomic S.ructure and Spectral Lines.

27. The Partial Differential Equations of Mathematical Physios.
We have met Laplace’s Equation :
. Pu , Ow , O
@ P + a—yz + m 0,
In the attraction of gravitating matter and in an electric or magnetic
field of torce, u denoting the potential function; again, in the irrota-
tional flcw of an incompressible fluid, u denoting the velocity poten-



372 . CALCULUSB

tial; and still again in the steady flow of heat or electricity in a
homogeneous, isotropic conductor, — the general equation for any
(nnsteady) flow being

. Ou_ o Pu  Pu
(O w- o op +aab }
where u denotes the temperature or the potential.

The equation of the vibrating string is found to be (Chap. XV,

§ 7 and Chap. XVII, § 11):
.. Pu__ , 0%
(llf) . 61:2 = a_a:z‘,
where u denotes the distance of any point of the string from its
position of rest, the motion being either transverse or longitudinal
The equation of the vibrating membrane,
: ' u Py, Pu
@) e ol2e, 2,
u denoting the transverse displacement, and the sound equation,
P _ Py | O, O
® e {555 top T b
where w denotes the velocity potential of the vibrating medium,
are deduced by Hamilton’s Principle, Chap. XVII, § 11.

The foregoing are all linear partial differential equations of the
second order, and they, with others like them,* form a set of equa-
tions known as the Partial Differential Equations of Mathematical
Physics. They are treated by various methods, notably by develop-
ment into series, by definite integrals, and by integral equations,
and their discussion forms an extended theory. We take this occa-
sion to give an example of the first method, since it affords a
natural approach to Fourier’s Series.

Consider the problem in the flow of heat, formulated in Chap. XTI,
. § 16, as the typical boundary value problem for Laplace’s Equation
in two dimensions. This problem calls analytically for,a function,
u, continuous within and on the boundary of the circle

4 yt=1,
having continuous partial derivatives of the first and second orders
which satisfy Laplace’s equation

*The partial differential equations of the vibrating rod and the vibrating
plate (Chap, XVII, § 11) are also linear, but of higher order,
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Pu | Pu Pu_ 10u 10w

@ wiap=" " mtintaes

within the circle, and taking on an arbitrarily prescribed set of con-
tinuous boundary values, f(6), on the circumference, C:

@ o= f(6).
The following plan of attack is important in applied mathematics.

Seek first special solutions of Laplace’s equation, written in polar
coordinates, which shall be of the form:

3) u = RO,

where R is a function of » alone, and @ a function of § alone. Sub-
stituting in (1) we have:
@R 1dR @0
drt " rdr _ d@®
R e

r2

or

N trar |Trae—

[dzR 1 dR:l Rde_,
b

Since one side of this equation is independent of 4, and the other
side, independent of », it follows that each side must be constant;
set this constant =n2 We are thus led to the two differential

equations :
da:e d*R | dR
4 — 2@ = == — —n?R=0.
*) ae " 0 e e "
The solutions of these differential equations are:
_ . R=A4r 4 Br™, 0<n.
(5) ©®=acosnf + bsinnb, {R=A+Blogr, n=0.

Since the function we wish to represent is continuous at the centre
of the circle, we should look askance at a solution (3) which became
infinite there, and so we set B=0.

Moreover, ® must be periodic, for its value is the same when 6 is
increased by 2x. Hence n must be an integer. This property of
the periodicity of @ also justifies our choice of the above constant as
positive, =n? If we bad taken it as negative, =— n? the corre-
sponding differential equation in ® would not have yielded any
periodic solutions (2 0).

Let « run through the values 0,1, 2, .... Then the sum

(6) 3, (e, cos né + b, sin nf)
is a solution of (1), and the infinite series will be, too, if it converges
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properly. Suppose it does. Then, along O, we shall have r=1,
and from (2) and (6)

()] S0 = g (a, cos nb 4+ b, sin nf).

This last equation suggests the plan of attack. Begin by develop
ing the function f(8) into a Fourier's series (Chap. XVI, § 1), thus
determining the coeflicients a, and b, in (7). Next, multiply the
general term of (7) by 7. The series thus obtained will be the solu-
tion of the problem:

(8) u= ) r(a,cosnd 4 b, sin nb),

provided the series converges properly; for (a) each term in the
series satisfies the partial differential equation (1) throughout the
interior of the cirele; and (b) the limiting function » takes on
the prescribed boundary values when r =1,

The questions of convergence here are not simple, and their study
forms a large and important chapter in modern analysis. The re-
sults show that in all cases in which the conditions imposed on the
problem are such as are of interest in physics, the series do converge
and thus the physicist may apply the method with confidence that
it will yield correct results. Cf. Byerly, Fourier’s Series and Spher-
scal Harmonics, and the recent work of Hilbert and Courant, Me-
thoden der mathematischen Physik.

EXERCISE
The differential equation of the vibrating membrane is
Pu_ o [Pu P
or oz ' Oyt

Consider a drum-head vibrating so that points initially equi-
distant from the axis always lie on a circle whose plane is perpen-
dieular to the axis and whose centre is in the axis. On introdicing
polar coordinates we see that ou/20 =0, and hence

Pu_ a? Pu, 10u
or {arz+ }

ror
Apply to this equa.tmn the method set forth above, letting
u = TR.
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Show that an infinite sequence of particular solutions is obtained if

a7 &R 1dR
——Ma2T =0 padioely Pkt 2R=0
a TrYTED ar trar TVE=0

TR = (@, cos A, at + b, sin A af) J, (A1),

The given initial conditions are :

- a
o =/, 2 =40,
where f(r) and ¢ (r) are continuous, and
Jh) =0, é(h) =0,

% being the radius of the drum-head. For convenience, set i =1.
Now, develop f(r) and ¢ (r) as follows:

7ey= 3 ado(nr), $(1) =3, brsado(ur),
k=0
where Ay, A;, --- are the positive roots of the function Jy(z). Thus
the series
U= ; (a, cos A at 4 b, sin Ayat)Jy (A7)
will give the desired solution provided it converges snitably.

Explain the reason for choosing the constant here as A% and not
~ A%



CHAPTER XV

ELASTIC VIBRATIONS

1. Simple Harmonic Motion. The simplest case of oscillatory
motion about a position of equilibrium is that of Simple Harmonic
Motion, studied in detail in the chapter on Mechanics, Introduction
to the Calculus, p. 364; cf. in particular Ex. 7, p. 368.

This case is typical for the great majority of systems with one
degree of freedom (one coordinate) such as one meets in physics, so
far as a first approximation is concerned. Even continuous media,
like a vibrating piano string, can obey this law, and a study of their
motion in this simplest case is often a convenient approach to their
theory.

The differential equation which dominates simple harmonie
motion is

dx
(¢h) 7 nix=0.

We solved it at the time by a method which was useful and sug-
gestive at that stage. The method best adapted for the study of
the problems of this chapter is the one set forth in Chap. XIV, § 12.
Setting z=em
we find, for the determination of m, the equation:

m:4-nt=0,
and hence the general solution of (1) can be written in either of the
forms:

@) z=Acosnt+ Bsinnt or = Ccos(nt+7y)
[# = Csin (nt + y)].

The Period. The period of a half-oscillation is seen to be x/n;

the period from phase to phase is
2n

The amplitude is constant and = 2C.
376
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A second approximation is introduced when we take damping into
account. This dissipative force is due to the resistance of the at-
xﬁ'osphere, or the vjscosity of the substance, or other similar causes.
It is studied in § 2.

Finally comes the case of forced wibrations, studied in § 4 in its
simplest form.

EXERCISE

Show that the velocity with which the particle passes through the
point of equilibrium is proportional to the amplitude, and compute
the kinetic energy which it has at that point.

2. Damping. The physical picture which it is convenient to use
in these paragraphs is that of an elastic wire, or spring, its upper
eld fastened at a point, 4, and a weight m attached to its lower end,
Then
) T= xil’ mg =X\ “‘70,

where I = AB is the natural length of the string, O is the point of
equilibrium, BP=3s, and BO=3, Let OP =z, or

@ T=28— 8.

The damping is a force which acts in the direction opposite to
that of the motion, and which increases with the velocity. The sim-
plest mathematical formula which will yield such a force is

—k 3—‘:: A
where k is a small positive constant. And now it turns out
physically that, in the case of small oscillations about the 1
position of equilibrium, this formula gives a satisfactory
approximation.

From Newton’s Second Law of Motion, Jutroduction to the 3!
Calculus, p. 348:
s _ ds o
3) m ="y Tk, I
«{ ] kgi
From (1) and (2) we have t
S_A T
T—mg=ki—)\—l-=7w, PW
|
d8== de d-i‘ = d'_’-z_‘ Fio. 88
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I3

Henee (3) can be written :
Pz _ A, pd
mam =T
or dtz

a , sy
0 a-t—2+xa—t+'nw-0,

where x =k/m and n =A/ml.

Thus we have the differential equation of simple harmonic motion,
§1, (1), to which the damping term, «dxz/dtf, has been added.

To integrate equation (4) let 2 = e™; Chap. X1V, § 12. The equa-

tion for m becomes:
m:4km+nZ=0,

Since « is small, the roots are imaginary. Let
v=Vn?— 1«2

The general solution of (4) can now be written in the form :

&) z=Ce cos (v +7),
where C and y are the constants of integration.

EXERCISE

Show that, if the particle is started from a point at which z=a
with a velocity equal to v when t =0,

1/u, «
tany=—={ -4 =}
r==(e*3)
Choosing y so that 0 £ y < =, find C.
3. Discussion of the Result. From the solution (5) of § 2 we see
that, no matter how the system be set in motion, the particle passes

periodically through the point O of no force, the period being w/v.
Baut the period from phase to phase is twice as great, or*

® = 2.

1 4
Since « is small, we have (cf. Introduction to the Calculus, Infinite
Series, p. 413, (2)):

1=1(1_£5*=1(1+i+...>.

vy % 4n® n

* We are here using the letter 7' for the téme corresponding to a compiste
period,
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Hence the period (6) differs from the period the same system has
when there is no damping, § 1, (3), by a small quantity of the second
order, referred to x/n a8 of the first order:

- 2w

v

=2z L (V] = ity | -
== +(n) {4n+ a.sma.llqua.nfnty}

The amplitude of the oscillation dies down, owing to the expo-
nential factor, and approaches 0 as its limit.

4. Forced Vibrations. The phenomenon of forced vibrations is
familiar to the race through varied manifestations. A regiment of
soldiers, in crossing a bridge, is commanded to break step. The
chances are that it is unnecessary to do so. But if the natural note,
or period, of the bridge should be about the same as the beat of
their steps, serious consequences might ensue, for the bridge could
be brought into violent vibration.

We are told, too, how the piper fiddled down the bridge by strik-
ing the note of the cables, and the walls of Jericho are reported to
have fallen in a similar manner.* We have all had the experience
of sneezing in a room where there was a banjo, and then hearing
the banjo sneeze, too.

The tides form another example, for they are due to the attraction
of the sun and the moon. .

One of the cheerful recollections of my school days is that of
shaking the room in the old Rice Grammar School in Boston. A
child, sitting at his desk, with the ball of the foot on the floor could,
by causing the leg to move up and down with a period nearly equal
to the natural period of the floor, produce vibrations most disturb-
ing to the lady school teacher.

® Joshua vi. 20. It was Mr, Fulton Cutting who called my attention to this
tact years ago in Mathematics 5.



880 . CALCULUS

The phenomenon can be studied effectively mathematically by
means of the following experiment.

Let a soft spring be attached from below to the weight of § 2, and
let the lower end of this spring be driven periodically up and down.
Thus a periodic force is impressed on the weight, and the motion
which ensues is called a forced vibration.

Imagine a plate which can move vertically
and which is provided with a borizontal slot.
Behind the plate is a crank which is driven with
uniform angular velocity in a plane parallel to
that of the plate. The crank carries a pin which
passes through the slot, thus causing the plate
to move up and down. The depth of the plate
below its position when the crank is horizontal
to the right (¢ =0) is

€ 8in pt.

It is to this plate that the lower end of the soft spring is 44
attached. Let

‘ g

R %

F1a. 90

8’
Tﬂki-l;

be the tension in the soft spring. Newton’s Second Law
becemes :

dzs y d_s_ B
@ mog=mg— T+ T -k
From the figure we see that the stretched length of the o *
soft spring can be expressed in two ways: ) c{

V+4=Q0C + OB + BP,
where (' denotes the position of the lower end of the soft B’-r
spring when £=0. Now,

QC' = ¢sinpt, OB =1, BP=F0—u
Moreover, since O is the point of no force,

@ mg+Ty=T, or mg—-—BO+ YFo=0. O

ol
Henoce the right-hand side of (1) becomes : Fia. 91
3 ——-(B—O+z)+ (B0 — z)+ N sinpt — k‘:;’

Thus (1) reduoes by the aid of (3) and (2) to
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¢z A, A A dz
Y] mdt,== 1+F’)¢+7¢smpt—ka
or
®) %+x%+n2w=Esinpt.

5. Integration of the Differential Equation. We can effect the
complete integration of the differential equation which governs the
motion, § 4, (5), if we find one single special solution; cf. Chap. XIV,
§ 11. Now, it was long since known or surmised that the system on
which a periodic impressed force acts ultimately gives up its own
note and takes on the period of the impressea force. . But the phase
of the one oscillation is different from that of the other; the tides
lag behind the moon.

We are thus moved to try an experiment and see if we cannot de-
termine a particular periodie solution of (5), § 4, built on the simplest
lines imaginable. So we set

® z= Asin (pt — a),

when 4 and o are undetermined constants, and try to determine
these so that (6) will be a solution.
Substituting the function (6) in equation (5), we find :

A(n®— p?) sin (pt — &) + Axp cos (pt — &) = E'sin pt.
This equation is equivalent to the following :
{A(n?— ) cos @ 4 Axp sin & — E}sin pt
—{A(n* — p*) sin « — A«p cos ajcos pt = 0.

The latter equation will be true for all values of ¢ if

) A(rt—pHcos a4 Axpsinoe=E
A(n? —p?)sin o0 — Axp cos o = 0.
From the last equation follows that
@) tan & = ;;}p_z

We will agree to understand by « that root of this equation for
which 0
< e

The first equation (7) gives
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Exp .
@ A= (@ =)+ op] sina
Thus A is always positive.
The experiment has suceeeded. We have found a solution of the
form (6), where « and 4 are determined by (8) and (9). The general
solution of (5), § 4, can now be written down:

(10) z=Ce % cos (vt +y) + Asin (pt — ),
where C and y are the constants of integration, and »=vn? — 1«

6. Discussion of the Result. (a) The system gives up its natural
period and takes on the period of the impressed force.

For, the first ferm on the right of (10) becomes insignificant, as ¢
increases, no matter how the system was started ; the second term,
however, is "periodic.

(3) When p and v are nearly, but not quite, equal, beats appear.

For, there comes an interval in which the arches of the two com-
ponent curves, (5) of § 2 and (6) of § 5, lie on the same side of the
axis of  and have almost coincident bases. Thus they reinforce each
other. Then comes, a little later, an interval in which these arches
lie on opposite sides of the axis of # and have almost coincident hases.
Now, they tend to neutralize each other. And so on. Finally, both
phenomena are flattened out as the first term on the right of (10)
tends to disappear. '

Fio. 92

If the vibration of the system is such as to produce sound, the
sound will be loud daring the first interval, low during the second,
then lond again, and so on, — for the intensity of the sound is greater
when the amplitude of the oscillations is greater. Thus we have
the phenomenon of beats in acoustics.

(¢) When p and v are equal (or very nearly so) and x/p is small, the
amplitude of the forced vibration is large, and the lag is a guarter:
period (nearly).

Bince »! = n? — }x?, we have here (p=v):
n? — p? = } a2, tan g = 4L,
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and hence « is slightly less than 90°. Moreover,

stx;’a ,l‘x‘K-;-Lx”p’up’sma[ p)]-/P

or A is nearly inversely proportional to «/p.

Now, in the system described in §4, E is small. If, however,
E/p* is not small in comparison with «/p, the value of 4 will be
large, and thus the system on which the periodic force is impressed
will oscillate violently. This is the case in which the natural period
of the bridge is nearly the same as the period of the force im-
pressed on it by the regiment; or the case of the banjo that sneezes
sympathetically.

For a further study of the subject of these last paragraphs the
student is referred to Lord Rayleigh’s Theory of Sound, vol. I,
Chap. 3, and to Helmholtz, Theoretische Physik, vol. 3, pp. 1-71.

7. The Differential Equation of the Vibrating String. Consider
a perfectly flexible homogeneous string of uniform density, which
obeys Hooke’s Law, and which has its two ends fastened at two
fixed points, 4 and B, further apart than the natural length of the
string. The string is given an arbitrary initial displacement, sub-
ject merely to the conditions that it is nowhere stretched beyond
the elastic limit and that it is nowhere slack, and that certain re-
quirements of continuity are observed. To determine the subse-
quent motion. A plucked violin string, or a piano string, struck
by the hammer, suggest the sort of problem that is meant.

Hooke’s Law. Let I, denote the natural length of the string, and
let I; = AB (Fig. 93). Then the tension is given by the formula:

—al=h,
@ T=1-7

In particular, the tension in the string at rest is
@ T, = x"—z—’?‘

Let » be the coordinate of any point P of the string when in
equilibrium, measured from A, or x=_4P. Consider a segment
PP = Az, and let 2 be the unstretched length of this segment.
Then
(3) Tl = A Az — h .
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Lot the end 4 of the string still be held fast, but let the other
end be pulled out to a point C.. Let @, with the coordinate £, be
the point into which P is carried, The segment PP, of length Az,
goes over into Q@, of length A{, and since the natural length of
QY is also 2, we have for the new tension

—h
P p i 4 7, BE=R
4 x M-Az' - ( ) ! h
& - C  Eliminating A between (3) and (4)
Fia. 98 gives:
=788 L2884\
® n—z'lMH(M 1)
Let Az approath 0:
dé dé
Ty=Ty—=> = 13
(6) v=Tig o+ "(dx )
Let u denote the distance PQ, or
) u=§¢—z
Then P
® Ty=T+(Ti+ N7

This last equation expresses Hooke's Law for the tension at an
arbitrary point P in terms of the constants 7, and A and the rate of
stretching, du/dz, at P. In this form, the law admits extension to
the case of variable tension such as arises in a vibrating string; cf.
Formulas (16) and § 8, (6), below.

Longitudinal Vibrations. Consider now the particular case of the
general problem proposed above, in which the string is displaced
along its own line, the ends remaining fixed; and then released.
This initial displacement is defined by an equation

where f is a continuous function. We T/;\ .
will assume, furthermore, that fhasa of ! (7
derivative which is also continuous, ex- m\a‘;&/
cept possibly at a finite number of )
points, at each of which a forward derivative and a backward deriva-
tive exist.

Our problem is: To determine the position, at an arbitrary instant
t, of that point of the string which has the coordinate x when the string
is at veat in equilibrium; i.e. to determine the functions
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E=£(x, 0, u =u(2,1),
where u and ¢ are connected by (7).

To do this, consider a segment Q@' of the string, and isolate this
system. Let PP’ be the corresponding segraent when the string is
in equilibrium. Its mass is m = pAz. Its centre of gravity, £, is
given by the formula Lot

p§)EdE

(10) = :
m
where p(¢) denotes the density at any point £ of Q@
Change the variable of integration from ¢ to z. Then

P(f) d¢ = pdz,

where p is the constant density of the string in equilibrium. For,
the mass of the string from A4 to any point ¢ is

f p(6) d = pz. Henoo (&) % =.

Thus (10) becomes : etde
1) mé = f pé(x, 1) dz,

where ¢ is arbitrary, but constant.

Motion of the Centre of Mass. It is a fundamental law of mechan-
ics that the centre of mass of any material system (system of par-
ticles, rigid body, or even the Mississippi River) moves as if all its
mass were concentrated there and all the forces were replaced by
equal forces acting there.

Applying this principle to the segment Q@' of the string, we have:

2E_ o
(12) m;th_—Tl T
A P P’ . Q Qq N B
& otas T E EYAE T
Fia. 9

If, now, we assume that £(z, ¢) is, together with its partial deriva-
tives ¢, ¢,, continuous in the two independent variables = and ¢,
then the integral (11) can be differentiated by Leibniz’s Rule, Chap.
XIX, § 1, and we have:
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(18) m%’§=jpﬁaz=pme..(c+ das,f), O0<d<l

On the other hand, T = T'(z,¢), and
P — T= T(x + Az, t)— T(%, ) = AT, (2 + 6'Az, 1),
if, as we will assume, T'(z, t), together with 2T/oz, is continuous in
(z,¢). Thus (12) becomes:

o2 '
Ax[ &= =AazT, (z + § Az, 1),
b P w(w‘)(wm-.n ( 9
Dividing by Az and allowing Az to approach 0, we find :
¢ _oT 2u_oT,
(18) =% T PamT

As yet, no other hypothesis than that of continuity (including the
derivative) has been made regarding 7. We now assume Hooke's
Law, which here takes the form: *

(16) T=Ti+o o=Ty+\
Thus, finally, we obtain from (15)
Py #u c
an = =0

This is the equation of the vibrating string. It is exact, if Hooke’s
Law is exact, no approximations of any sort having entered. Thers
are, however, certain implicit restrictions, which consist in the as-
sumption that du/0z never becomes so large that the elastic limit of
the string is surpassed ; and also that the string never becomes slack
and buckles. )

8. Continnation; the General Case. Let the string now be dis-
placed in any curve, suitably restricted with respect to continuity,
and let its form be given, at any instant after its release, by the
equations :

@) ,6 = (= t), n=n(,1);
the motion to take place in a fixed plane. Let
U={—a, v=9n-0.

® This last statement is not & mathematical inference, but & new physical law,
wuggestad, it is true, by the mathematical deduction of (8) from (1),
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Consider an are PP’ of the string. The external forces acting on
it are: T at Pand 7" at P, each along the tangent. The motion of
its centre of gravity is given by the equations:

@ w2 T oony — Teonr; m%i-arsinf'-minf.
For y we have:
s+ds
p(8) (=, t) ds
o G

m
Here, ¢ is constant, and ds is given by (1):

@) ds? = (& + 4f) da2.
Moreover, p(8)ds = pda.
Hence
Y.y ®+Ax
fP(B) nd3=fpnd==,
i e >
= ik ;- e ]
4) il L ks

On substituting this value in (2), dividing by Az, and taking limits,
we have:

)
(6 e Frial (T sinr).

Hooke’s Law here takes on the form, cf. (6), § 7:
©) 7= (T,+A)a-s—)\=c\/_£,’;+'_’q,—z\, cus Ty + A
Thus Tsmr_cq,—__’L__

VE+

On introducing v and v we have:

U, .
™ P 3!‘2 Bm[ TFu)+ ,,,!_:]

The corresponding equation for ¢2u/o¢? is:

Py A4 u) J
B8
® Pow— B:c[ VA Fuy+ol
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Approwimations. Equation (7) is ordinarily replaced by an ap-
proximate equation in case u, and v, (and hence also w) are numeri-
cally small,

2_ v, = Ves _ [(1 + ua)"ﬂ__._!_ﬂ.]“ Vo¥sri Yy,
avI+wy+e VI+ur+a  [(1+u)+o)

Dropping terms of the order of magnitude of u, and v, we have:

oty ] T,
(9) -é-ﬁ =qa? -3?3’ ad = —;L
Equation (8) becomes
o2y 2u T+ A
(10) =pr 2 pr=D1tA,
o ox?’ P
EXERCISES

1. Show that, when the string vibrates in three dimensions and
we set

u={§{—u, V=1 w={
equation (7) becomes
v__ 9 Ay ]
11 —=—{cy,— z .
an P aa:[ VAFu )+ +ul

Write down the other two equations,

2. Show that equations (7) and (8) hold when p is any continunous
function of z, and also when the end B is not fixed, provided that
no external forces act along the string.

8. Show that, if there is a slight damping, which is nearly pro-
portional to the length of a short arc and to the component of its
velocity perpendicular to the axis of =z, and is nearly perpendicular
to this axis, the approximate equation for small vibrations becomes:

oy, v v
12) £ +« % =aq? P

4. An inextensible heavy chain bangs from a fixed point, 4, and
is displaced ina vertical plane. If gravity and the force at 4 are the
only forces which act, show that the motion is governed by the dif-
ferential equations :

Pu_ 2 Ou Tvl(rZ
P “’am[T(l +6:c):| ton o P T3w>’

(2 -
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5. For slight displacements, show that the apploximate equations
in Question 4 are:

N o 0 - ov
T=gp(l— g lla—ay?}.
gp ( x)’ atz g aw [(l z) az])
or, on setting /— z=2', and then dropping the acocent:
Pv_ 0 (,00
o g@m( oz

8. A heavy uniform string of natural length [, obeying Hooke’s
Law, hangs from one end, at rest under gravity. Show that it is
stretched by the length gpi2/(2)).

7. If the string of Question 6 is flexible, and if it vibrates in a verti-
cal plane, find the differential equations which govern the motion. .

9. The Differential Equation of the Vibrating Membrane. Let
an elastic membrane, like a drum head, be clamped along a plane
curve. Let it be displaced and released. To determine the differ-
ential equation of the motion.

Hitherto we have derived the differential equation without making
approximations, and we have proceeded from it to the approximate
differential equation. In the present case, this course would involve
too extended a treatment of the theory of elasticity. We will
confine ourselves to the simplest case, assuming that the motion of
each point of the membrane is orthogonal to the plane of the bound-
ing curve, C'; that the displacement, u, of the points of the mem-
brane, together with éu/éx and 0u/dy, is small, the (z, y)-plane coin-
ciding with that of C; and finally, that the tension, T, is the same
in all directions at any given point, and is constant at all points.

Consider a piece, 3, of the membrane, whose projection on the
(», y)-plane is 8. For the motion of its
centre of mass we have approximately:

Pu_ ou
o) mit = J T2 as,
where n is the outer normal to T in the
(=, y)-plane.* Fia. 97

* We cannot properly speak of the ¢ derivative along the outer normal" in
this case. What we mean by this expression is the negative of the derivative
along the inner normal.
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By Chap. XI, §4:
8’u 3’1&
f az’ 8y3

mu -ffpu,d&
Hence (1) becomes : y

o ffLE-rEno

Since 8§ is arbitrary, it follows that

On the other hand,

{ Pu_ 2 (Bu Pu tem L
@ i 3::2+8y’)’ @

and this is the differential equation of the vibrating membrane.

EXERCISES

1. If there is damping, represented by a force per unit of area
proportional to du/6¢ and at right angles to the plane of C, show
that the differential equation will be:

3’u+xau a,(azu_'_a’u)

T
2 ozt ' oy =2

P

2. If the membrane is heavy and flexible, and the axis of w is
directed upward, show that

o*u 0t 0%
o (ax’ + ayn) g-

8. Consider the case of variable tension, 7', but assume that, at
any point, the membrane “ pulis equally in all directions.” Define
accurately the specific tensgion.

4. Write down the accurate integral which corresponds to the
approximate integral on the right of equation (1). Hence derive the
approximate integral.



CHAPTER XVI

FOURIER’S SERIES AND ORTHOGONAL FUNCTIONS

1. Formal Development into a Fourier's Series. By a Fourier's
Series is meant a series of the form:

@ %+g(a,cosm+b,sinm:).

Its terms all admit the period 2, and so it is suficient to consider
the series in an interval of length 2«. The simplest such intervals
are

2) 0f2<2x and —r<L TS

Let f(x) be a function which is continuous in the second of these
intervals, or has at most a finite number of
finite discontinuities as shown in the figure.*
It is convenient now to extend the definition
of the function to all values of z by the property
of periodicity :

J(@ 4 27) = f(z). Fic. 98

It is a theorem, the proof of which cannot be taken up here, that
such a function can be represented by a Fourier’s series :

)] J(®)=1}ay + a,cosz + b, sin x 4+ ayco8 2z + b, 8in 2z
-+ @y €08 32 + by 8in 32 + -+,

{.e. this series, when the coefficients are properly determined, will
converge for every value of z, and its value will coincide with that
of the function at the point.

® More precisely, it shall be possible to divide the interval into a finite num-
ber of segments by the points zy = — =, 2;, «+«, Z4~1, T, = = 8uch that, in the
interval ;.1 < # < z, the function and its first derivative are finite and continu-
ous, and each approaches a limit at either end of the interval. Finally, at a
point of discontinuity, the function shall be given the arithmetic mean of the
two limiting values which it approaches from either side ; and its value forz =
ghall likewise be the mean of the two limiting values when z approaches — ¥ or.

3901
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‘It is further shown that, when the above series is multiplied by
008 nz or sinnz, the new series can be integrated term-by-term (i.e.
just as if it were a finite sum) throughout the interval (— , ).

This last property enables us to compute the coeflicients. Observe

that
3 :
4 f sin ma cos nzdz = 0, J sin mz sin nedz = 0,

-7 -7
.4

’ fcosma; cos nxdz = 0,
where ', n are any two integers, positive or zero, in the first relation,
but in the second and third, m % n. For,
8in ma cos nx = L[sin (m — »)x + sin (m + n) 2],
8in mz sin nz = §[cos (m — n)x — cos(m + n)z],
€08 ma o8 nz = }[cos (m — n) x + cos (m + n) z].
Moreover,

.4 -~ v .4
(5 sin? nwde = =, ',/.GOS2 nxdz =, f}d&v =m.

On multiplying equation (3) through by cosnz, n=0,1,2, ...
and integrating the resulting equation from — = to =, all the terms
but one on the right drop out by virtue of (4), and we have:

ff(z) cos nzdr = a,,fcoszm:dx = d,,.
Similarly, on multiplying through by sinnz and integrating, we
have:

ff(a;) sinpedz = b,,.[.sin2 nedx = b,

Thas the coefficients are determined, and we have:

aﬁ=.1_ff(w)cosnzdx, n=0,1,2, .
m
A

® .
b,=1ff(x)sinm:dm, n=1,2,
”
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The series (3), in which the coefficients 4, and b, have the values
given by (6), is known as the formal development of the function

f(=), for f.his series exists in form, quite apart from the question of
whether it converges and represents the function.

Example 1. Let f(z) =z, —7<2<7; f(x)=0, Then

a°=1fxda:=0;
4

-

and Tables, Nos. 336, 34G:

. ¥Fi1e. 99
=1f. _1 . "
a, ;fa,cosnzdm—;-;ﬁ(cosnm+n:vsmnm>_70, n=1,2 o

”
1 . 1 . -
=2 [ wsinnedr =—(sinnz — nzcosnz ) = — 250877
w wn? . n
st 3

Hence . in 2 in3
7 —of8inz_sin2z sin8z 7
™ e [1 2 t73

Ezample 2. Letf(z)=2, 0<z<7; f@)=—2, —w<z=50.

i‘ I "l ' 2' Here, )
“ “ ! . _2cosnw —2,
L L N LN e gy= U =) by=0

Fia. 100 Hence
x 4[cosx , cos3x , cosbx
f(w)—é—;[ ot st t ]
EXERCISES *

Obtain the formal development into a Fourier's series in each of
the following cases, and plot the curve.

1 f(:t)==1, O<e<ry — vl _‘
J@)=—1 —x<2<0; AR ) A
SO)=f(r)=0. . 1
Ans. f(z):é[Si;lw+sm3z+sm52+ :}
T 3 5

* For further examples, cf. Byerly, Fourier's Series, pp. 41-51.
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8 fE)=2 0<a<n; [f@=0, —r<250; [fix)=ix
s, J@)mat, —rs<2g™

4 f@=2, 0<z<7; f@)=—2, —x<250;
S(m)y=0.

5. Prove that, if f(z) is an odd function in the interval
—r <2< w; b6 if f(—a)=—f(x) (and if f(x)=0), then a, =0,
n=0,1,2 .. and

S(®) =b,8inz + by 8in 22 + by sin 8z 4 ---.

But if f(z) is an even function in that interval, i.e. if f(—2)=
f(ﬁ), then bn=01 'n=1, 2, ey, a,nd

J@)=1ag+ a,co8x + azcos2x - azcos3x + -,

6. Show that a function f(x) which, in the interval 0 S 2 < «,
satisfies the conditions of the text, can be developed formally
(a) into a series of sines; (b) into a series of cosines; (c) into a
series containing both sines and cosines,— depending on how the
function is defined in the interval —r <z < 0.

Which of these developments are uniquely determined ?

7. State a generalization of Question 6 for an arbitrary sub-
interval (a’, ¥’), where —r < a’' < ¥ < =

2. The General Problem of Development into Series. Power
Series. We have met the development of a function into a power
series, Introduction to the Calculus, Chap. XIV, p. 423:

W S@O=f@+r@E -+ D e apt

and we have proved that, in the case of some of the most important
functions,like e®, sinz, cosx, log(l+2), (1+=2)*, theseries
converges, at least throughout a certain interval of values for =, and
represents the function there. But what reason was there for ex-
pecting such a result, and what reason is there for expecting it ever
to happen again? Is it not all but preposterous to expect, for
example, a series of powers, like
2, 2

m_g_!_f.g.i_ eee,
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whose terms are not periodic, and whose partial sum, s.(c), is not
periodic, either, no matter how far n be increased, to represent a
periodic function, sinz? For,

sin (z 4 2#) =sina.

What is there behind it all ?

One answer to the question is as follows. Let us give ourselves a
succession of polynomials of degrees 0, 1, 2, .., n, with undeter-
mined coefficients, and try to determine the latter so as to get the
best approzimation possible near the point a. Write these polynomials

L@ =a+aE—a)+aE@—art .t (z—a)?
Thus the graphs of the first three functions:
Q@ =0y 8(2)=c+c(z—a)
4(®) =q+a@—a)+a@—a)p
are recognized as (i) a horizontal straight line; (if) an arbitrary
straight line (not vertical); (iif) a parabola with vertical axis. It

is clear that the best use to make of ¢, in Case (i) is to make the
line go through the point P which corresponds to z = a:

8,(2) = f(a);
and in Case (i), the best line is the tangent to Y f
the curve y = f(x) at P, or P
= ' —_ ®
8(2) = £(2) +£'(@)(z — ). =]
In Case (iii), the best parabola will surely Fia. 103

go through P and be tangent there, or
s@=c=r(a); s(a)=c1=s"(a)
8 (z) = f(a) + f'(a)(z — a) + & (z — ).
Now, of all these parabolas, that one will most nearly approximate to

the given curve, which has the highest contact with it at P, and this is
the one whose curvature is the same. Hence we must have:

$@ =@, o a=4/"()
n@) =1(@) +7@@— ) +L D@ —ap

Thus

The principle is now apparent. We take as our criterion of best
approvimation near P the requirement that the n-th approximation

N
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curve have the highest possible order of contact with the given curve
at P, and 80

2@ =@ +r@@-a) +L80@ - a4 ..
+ m(z — u)"‘.

(n—1)!
In particular, we observe that the coefficients which appear in any
given s, (x) are the same for those respective terms in all later ap-
proximations, s,(z), n > m.

If the function f(x) has derivatives of all orders near z= a, we
can carry this process on indefinitely, and it might seem that the ap-
proximation curve, y = s,(¢), must surely, at least throughout a
definite interval, approach the given curve, y = f(x), as its limit.
But it is to be remembered that a given order of contact becomes,
go to speak, geometrically operative only near the point in question ;
i.e. for values of « in a certain interval

2) a—h<z<a+h

And it is quite conceivable that, as n increases, & should grow smaller
and smaller and approach the limit 0. That this does not happen
in the case of the most important functions which arise in practice ;
that, namely, positive constants k do exist such that, throughout the
whole interval (2), the approximation is uniformly close, — this is
one of the great phenomena in matheratics, comparable with the
law of gravitation in physics. It bears not only on the character of
the functions themselves, but also on the form of the functions of ap-
proximation, the particular s,(x) used; for not every set of func-
tions s,(x), each of which is itself of the character of a polynomial
and has contact of the (n — 1)-st order at P, has this property.

It can be shown that a power series represents a continuous func-
tion throughout its interval of convergence. Hence such functions
a8 those of § 1 which have a discontinunity cannot be represented by
a power series throughout the entire interval (a, b).

EXERCISES
1. Plot accurately the graphs of
S(@)=logz and 8, (2)
fora=1, (n=2, 3, 4, 5), to 10 cm. as the unit in the interval
12wg 21
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2. Plot the graphs of sinx and the approximation curves through
the ope in #7/7!, in the interval —»r S 2 g », takinga=0.

3. Continuation. Beries of Orthogonal Functions. A new ap-
proach to the problem of development into series is as follows. Let
a function, f(x), be given, which is continuous throughout an interval
(a,b), or a £ 2 £ b; or at least is made up of a finite number of such
pieces, as explained in § 1 (cf. Fig. 98). Let

M $o (@), $1(2), 6a(@), -

be a set of standard functions; for example, if the interval (a, b) is
—r<zS7 let

o, (%) = cOSNE, o, (@) =sinnE, n=1,2, . b (®) = 1.
And let it be proposed to develop f(«) into a series of the form:
@ J(@) = copo(2) + 01P1(2) + Cape(T) + ---.

In the case just cited, (2) would be a Fourier’s series,
B f@)=3}a+acosz+bsine +a;eo82z+bysin2z 4 ...,
What sort of functions, ¢,(x), should we expect to use in the

general case, and what kind of requirement should we impose on
the approximation curves,

(4) 8 (w) = CD¢’0 (CD) + ¢ ¢1 (w) + -+ Cam1 ¢:-l (.‘E),
if the development is to appear plausible ?

* Orthogonal Functions. The anawer to the first question is sug-
gested by the experience of Mathematical Physics, and in particular
by the example of Fourier’s series. Let ¢,(2), n=0,1,2, .., be
continuous in the interval (a, b), and let

&) f b, () ¢, (x) do =0, m=£n,

no matter how m and n are chosen. Then the funections d¢y(z),
¢, (x) -++, are said to be orthogonal. Moreover, we will assume that
they are linearly independent ; cf. Chap. XIV, § 11.

Since no ¢,(z) vanishes identically, the imtegral (5) has a posi
tive value when m =n. If this value is unity:

®) f (6, (@) Pdz=1,
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wo say, the system of fanctions ¢,(#) is normalized. An arbitrary
system oan be reduced to a normalized one by dividing each term
¢, (2) by the square root (taken with either sign) of the integral (5),
formed for m = n.

The system of functions

M 4, cosx, sinz, cos2z;, sin2a, ...

considered in the interval (—, n), forms an orthogonal system ;
of. §1, (4). If, furthermore, each of these functions be divided by
/=, the new system,

1 cosz sinz cos2z  sin2z
(8) = — = - — 1 "
2Vx V= Vr V= vV
becomes normalized.
The Formal Development. Let us assume that the given function’
can be represented by a series of the desired form:

® J(@) = oo (z) + €161 (2) + Capy(2) + -+

throughout the interval (a, b). If, furthermore, on multiplying (9)
through by ¢, (=), the new series can be integrated term-by-term, we
have, by virtue of the orthogonal property (5):

(1) f (@) $p(2) dz = o, f [6y(@) ] do
Hence ) :
f (2) $4(2) da “.
) a=i——\ o o= [rE40
f [4,(@) TP dz :
in case the ¢_’s are normalized.

Thus the form of the series is established, in case a development
in terms of the ¢,’s is possible (and, moreover, the integration
whereby the c,’s were computed is allowable). It remains to show
that the series (9), where the coefficients are given By (11), con-
verges, and that its value is the same as that of the given function,

J(@).
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4. Approximations according to the Principle of Least S8quares
Turning now to the second question, namely, what kind of require-
ment should be imposed on the approximation curves (4), we find
one answer to be that given by Fourier: Determine the coefficients
¢, 8o that s (x) will actually coincide with f(x) in n points of the
interval. This requirement it is difficult to administer mathe-
matically.

A second form of requirement is suggested by the principle of
Least Squares,* and is as follows: Form the integral

(12) “=f[f(m) — G (%)= 1y (%) — o+ — CpyP1(2)JP

This integral may be considered as the integral of the square of
the error, extended over the entire interval. It is a polynomial in
the independent variables ¢, ¢, ---, ¢,-;, and it is never negative.
Moreover, it is evident that it is capable of taking on indefinitely”
large values for any given n. Hence it must have a minimum value.
A necessary condition for a minimum is that

L 2f[f— Codo — - — Curbyr] by = 0.

Since the ¢,’s are orthogonal funections, this equation reduces to the

following :
b

S(@) $s(x) d b
13) 6 = t—g—, or O = f J(@) $u () da,

Jin@ra

in case the ¢’s are normalized.

Thus we arrive in a most natural manner at the same determina-
tion of the ¢’s as in the case of the formal development, § 3, but
without any assumption concerning the possibility of the actual
development. 'We note, moreover, that here, as in the case of the
Fourier development, the ¢,’s which correspond to a given value of
» remain unchanged for all larger values of n.

#Toepler, Anzeiger der Akad. der Wissenschaslen in Wien, vol. XIII (1876),

p. 206. The method goes back to Bessel, Asironomische Nuochrichlen 6 (1828)
». 888.



4

400 CALCULUSB

EXERCISES

1. If f(z) is a function satisfying the conditions of §1 in the in-
terval {a, b), and if ¢(x), ¢, (2), --- are a system of functions, or-
thogonal and normalized in this interval; if furthermore ¢, is
determined by (13), show that the integral (12) has the value

Jr@ra-d-d- - -d.

8. If ¢,c, -+ are determined as in Question 1, show that the
series
G+cd+4+ .
converges, and that its value does not exceed f [f(x)]*da.

) (Bessel’s Inequality.)

5. Zonal Harmonics.* A further example of a system of or-
thogonal functions is afforded by Legendre’s Polynomials (or Coeffi-
cients), or the Zonal Harmonics, P,(z), considered in the interval
~1 <z < 1. These are polynomials of degree n (Chap. XIV, § 19):

Py(xy=1, Pi(x)==x, Py(zx)=4a2—4, Py(z)=4F2*—§xz, .

1.83.5----@2n—1)] ., n—1) 2
al {” ”zn(gn-n“’k

n(n—l)(n—Zl(n—-3)_
o4 @n—1)2n—3) S }

A second formula for P,(2) is due to Rodrigues:

@) P,(z) = ann! ar(z? — 1)~

da®

P.(:c) ==

These functions have in common with the functions (7), § 3, not
only the orthogonal property, but also the following properties:
(f) they never exceed numerically a certain constant (inciden-
tally, 1); and’ (éi) P,(z) has n roots in the interval (a.s over
sgainst the 2n roots of those functions).

* For s clear and succinct treatment of the properties of these functions, cf.
Pierpont, Functions of ¢ Complex Variable, Chap. XIV, p. 408. Numerous
spplications are given in Byerly's Fourier’s Series,
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EXERCISES

1. Show that o can be expressed linear]ly in terms of Py(x),
Py(), -+, P, (2):

&= ag Py(2) + ay Pi(2) + -+ + tyey Py (2)-
Suggestion. Consider first the cases: n =0, 1, 2, 3.

2. With the aid of the method of integration by parts and Rodi-
gues’s formula (2), show that

1

L[:&:"‘P,,(a:)da::O, m < n.

Suggestion. Begin with n» =1, 2, and 3.

3. From the results of Questions 1 and 2, deduce the orthogonal
property of the Polynomials of Legendre :

1

J‘Pm(:c)Pn(z)d:v:O m = n.

4. With the aid of the method of integration by parts and Ro-
digues’s formula (2), show that

f[p(z)]zdz (=D (2_1)~de

2 ()
(=D e 1) da.
2 (n e f -1

8. With the aid of the method of integration by parts, show that

: : n+1
J(m_l)"("+1)"d‘°=&'—m£ @+ Ly de = (SR 2

@n)! @n)l(2n+1)
6. From the results of Questions 4 and 5, show that
1
[P.(2)]de = — 2
! " 2n 41
-1

7. If f(2) can be developed into a series of zonal harmonics in the
interval (— 1,1):

J(@) = Py(z) + ¢, Py (2) + o Py(@) + -
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and if the series, after being multiplied by P,(x), can be integrated
term:-b¥-term, show that

=2 tl f (@) Py (%) da.

6. Bessel’s Functions.* The Bessel’s Function, J,, (%), is a certaiv
solution of the linear differential equation of the second order:

1 Ly ldy, () E’) =0.
@ et (175)r="
In particular, Jy(x) is that solution of the equation
PY Wy 4%
@ zda:2+dz+my 0, or dz dm +my=0

which remains finite at the point =0 and takes on the value 1°
there. It is given by the series

22, el
(3) Jo®)=1— 22+2242 mﬁ'"‘-
Furthermore,
@ O =551+ pg
Evidently,
®) o(@) = — Jy().

It can be shown that these functions have an infinite number of
positive roots, each of which is simple. Let those of Jy(«) be denoted

by A1y Agy =ee.
The functions
(6) '\/‘2‘];)()‘1‘”): '\/EJO(M), '\/EJO(AGT')’ e
when considered in the interval (0, 1), form an orthogonal family, or

1

M f 2do(®) AR dE =0, mm

For, on making a change of variable, z = Az’, A + 0, we find thata
solution of (2) becomes a solution of the new equation

”'%E“"%* o'y =0.

% Cf. Chap. XIV, §19. The reference to Pierpont in § § applies to these
functions, too ; L e. Chap. XV, p. 538. — For applications, cf. Byerly, Fourier's
Series.
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Hence J;(A») satisfies the equation

8 gﬁ dy 200 =
& ot oot Moy =0.
Lot u=Jy(ex) and v=Jy(Bx). Then
oy 4+ u 4+ a?zu=0, av’ +v 4 Bev=0.

Multiply the first of these equations by — v, the second by u, and
add:

z(uv” — vu”) + wv’ — oW’ + (82 — &) suv =10
or

;—m[m (wv' — )]+ (B — &) zuv = 0.

Hence, integrating and observing that «’ = aJi(ex), we have:
1

© (B —a) | aJy(ax) Jo(Br) = aJiw) Jo(B) — BJo(B) Jo(e)-

If we set @ =\, 8= A,, the right-hand side of (3) vanishes, and
thus the orthogonal property (7) is proved.
It is furthermore possible to evaluate the integral
1

(10) f 2 [JiA2)J

by means of (9). Differentiate (9) partially with respect to 8, and
then set 8 = a: ’
1

2 J a[Jy(ax) P dz = a[Jo(e) ] — Jo(a) Jo(a) — aJy' (@) Jo(a).

If, now, « = A,, this equation gives:
1

a1 J o[ Jo(@) ! dw = LTI T = $HODT

The Function J(z). This function is a solution of equation (1)
which, for any positive m (not necessarily an integer) is continuous
in the interval 0 < z < 1. It can be written in the form:

(12) Tol®) = 2 $(2),
where ¢(x) can be expressed as & power series in 22, and ¢(0) # 0.
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The function J,(z) has an infinite number of positive roots, each

of which is simple.
It can be shown that
3 Tu(@) =2 T (@) ~ Jan(®).

EXERCISES

1. Prove that, if the function f(z) can be developed into a series
of the form

J(@) = o (M) + &1 (M%) + 2 Jo(A22) + -+,

where Ag, Ay, Aq, -+ are the positive roots of Jy(x); and if, on multi
plying this equation by xJy(A\,x), the new series can be integrated
term-by-term, then

1
2 j 2f (@) Jou)d
[T
8. Bhow that J,(ax) satisfies the differential equation:

Py By (o PNy
mdm2+da:+(a wz)ary 0.

G =

8. Prove the relation

B —a?) | ad, (ax)J, (Bz)dx
= 2{aJ,(e2)J,(B2) — BJ.(B2)J.(e2)}.
4. If A, Ay, Ay, oo+ are the positive roots of J, (x), show that
'\/‘EJm()\o"’); \/EJ-.()\I‘U): \/E'Im()\!x)’ e
are a system of orthogonal functions.
5. Prove that

1

J‘ B[ () e = F[TL )T = H T AT

8. If the function f(z) can be developed into a series of the form:
J@) = ey Ao ®) + € T (M%) + €3, (M) +
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in the interval (0,1), and if, on multiplying this equation by
zJ,,(A,), the new series can be integrated term-by-term, show that

1

2fa:f(a:) I (A x) de

%= T O0T




CHAPTER XVII

THE CALCULUS OF VARIATIONS AND HAMILTON'S PRINCIPLE

3
1. Maximum or Minimum of f F(z, ¥ %) dz. Let F(z,y,p) be

& given function of the three independent variables z,y,p. Let two
fixed points, 4 and B, be joined by a curve C':

@) y=r(2),
where f(z) and its derivative, % =y’ = f’ (), are continuous in the

interval @ £ 2 £ b. Form the integral

@) J= f F(z,y,y')da.

The value of this integral will depend on the particular curve C.
The problem is to find that curve C, i.e. that function f(z), for which
the integral takes on its least (or its greatest) value.*

It is assumed that F(z,y,p) is continuous, together with its
partial derivatives of the first and second order, when (z,y) lies in
a given region 8, and p has any value whatever. Moreover, the
curve (' lies in S.

Minimum Surface of Revolution. For example, consider the area,
4, of the surface of revolution generated by the rotation of the
curve (1) about the axis of . Since

(3) A= 21rfy 1+_,..d:c

* For & comprehensive treatment of the Calculus of Variations, admirably
written as regards both accuracy and clearness, the student is referred to two
books by Bolza : Lectures on the Calculus of Variations, Chicago, 1904 ; Vor-
lesungen @iher Variationsrechnung, Leipzig, 1908-09. Cf. also Bliss, The
Caleulus of Variations, Chicago, 1026. "The latter book, the first of the Carus
Monographs, is intended for the layman and seeks to provide an approach to the
subject for those whose mathematical training has not gone beyond the rudi-
ments of the calcnlus.

406
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it is here a question of finding that curve for which this integral will
be least. The function F(z,y,p) is here yvi+ pi

Several Dependent Variables. A more general problem consists in

that of joining two fixed points in space by a curve such as will
make the integral

3
@ 7= [Fayny,va
a minimum (or a maximum).

2. Euler's Equation. Suppose the problem solved, and let
y = f(#) be that function which gives to the integral (2), §1, its
least value — we will restrict ourselves to the case of a minimum,
for that of a maximum can be reduced to this case by changing the
sign of F.

Let n=¢(z) be any function which, together with its first de-
rivative, 5’ = ¢/(«), is continuous in the above interval, a < z < b,
and which vanishes at the extremities of the interval:

] ome = 0, ’7|'="=0'

Moreover, » shall remain numerically less than a positive constanis
¢, which we choose in advance as small as we please; |3| < e
Form the function
Y=y+9

Then the value of the integral
»
f F(z, ¥, Y')dz
will be at least as great as
1]

so= [Py v
and the same will be true of each of the integrals

]
@ . J=‘/F(‘°) y+an, ¥ +ay)dz,

where « has any value from — 1 to 4 1. It is assumed that 5 is so
chosen that the curve corresponding to y.+ ay lies in 8.
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This latter integral is a function of , eontinuous for the range of
valnes bf « considered (ef. Chap. XIX, § 1), and it has its least value
when @ =0. Since it has a continuous derivative (1. ¢.) we must
bave: d

= =0,
do a=d !
Now, by Leibniz’s Rule (L. c.),
b ]
aJ_ (OF .. _ ,
@ - adw-f(vF'y+vF,)dw,

where the partial derivatives are both formed for the arguments
(z, ¥+ a9, ¥ + ay’). On setting & = 0, we find, then:

3) f(nF'.,+v;’F,)dm=0:

where F, and ¥, are now formed for the arguments (z, y, ¥’).

This equation must hold for all functions 5 satisfying the above
conditions. But it is not easy to draw inferences from the equation
in this form. For that reason we assume that the function y has a
confinuous second derivative * and proceed to transform the integral
of the second term by the method of integration by parts:

b b
, dF
@) f,, Fds = ,,F,[ —J} ? ds.

The first term on the right disappears, since 5 vanishes by hypothesis
at both extremities of the interval of integration. Hence we have,
as the equivalent of (3):

# This requirement involves on its face a restriction of the problem, since it
is conceivable that the original problem may have a solution, %, whose second
derivative does not exist. Hilbert has, indeed, shown that this cannot be the
case. But we are not concerned here witk tne difficult question of proving
mathematically that our problem (after still further restrictions) has one and
only one golution, and that this solution satisfies the further demand of possess-
ing a second derivative. On the contrary, we take for granted, in a given cage,
a8 more or less plausible from the physical evidence, that the problem will
admit & uniqus solution, continuous together with it8 derivatives of the first two
orders, for we know from experience that problems with a physical pedigree do
usually admit the kind of solution expected —and we then turn our efforts te
finding this solution. Incidentally, we get some interesting surprises as to what
was to be expected from the physical evidence,
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® jn(F,—d—din'!)dz=0.

Now y is arbitrary, subject to the conditions stated above. This
fact enables us to infer that, at every point of the interval (a, b), the
following equation is satisfied :

dF,
(4) F, - —#: 0.
For, suppose that, at a point 2 = ¢ of the interval, the left-hand

side were, say, positive. Being a continuous funection, it must remain
positive throughout a certain neighborhood

o Graph of v
of c. Let 5 be so chosen as also to be positive - P)
in this neighborhood, but zero everywhere ol e c b
else in the interval. Then the integral could Fra. 103

not be zero, and so we have a contradiction. Hence the theorem.

Equation (A) is known as Euler’s Equation. It forms a necessary

condition for a minimum (or a maximum). On carrying out the
differentiation indicated, it takes on the form
(A’) F,,%+pr%+sz—Fy=0,
a differential equation of the second order for y. The integral of
such a differential equation will depend on two arbitrary constants,
and these will be determined by the requirement that the curve pass
through the fixed points, 4 and B.

Extremals. A curve corresponding to any solution of Euler’s
Equation is called an extremal.

The Integrand, Independent of x. It may happen that the inte-
grand, F(z,y,y), does not contain z explicitly, Tn that case a
first integral of Euler’s Equation can be written down at once. For,
since here

d d
®) L@y F)=y(F~ L F,)
we have:
m F—y' F,= const.

Several Dependent Variables. If the integral depends on several
functions, as

b
® fF(wl %Y, 7) da,
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then Enler’s Eqnatxon must hold for each letter separately :

On the other hand, the integrand may contain derivatives of highe
order than the first. Thus if

19) J= f F@ 9, ¥, y") dz,

and if we consider such functions y as are continuous, together wit
their derivatives of the first two orders, and vanish together wit
their first derivatives at the end points of the interval, then Euler’
Equation becomes :

d dz
(11) F,—d—zF','*‘aiF,n:o-

EXERCISES

1. Let it be required to find the curve which connects two give
points in the upper half-plane and makes the integral

1) —_—
J=f————-—‘/1;"’mda:

& minimum, Show that the extremals are the semicircles whos
centres lie on the axis of z, and determine the one which goe
through the given points.

2. A ray of light traverses a certain medium, in which its velo
ity, ¢ (z, y), is variable, but at any given point is the same for a
directions. Show that the time required from one fixed point to
" second i8 given by the integral:

== f ds ‘f _1__-*-_!’1
$(= v)
and hence the path must correspond to a solution of the differentis

equation :

8. Integrate the differential equation of the preceding questio
When ¢(w, y) = o,
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4. The differential of arc of a curve on the surface
pmfn), ymé(n), z=p(w )
has been shown to be given by the equation (cf. Chap. VI, §4,
Ex. 21) dst = Edu? + 2 Fdudy + Gdv®.

Show that the geodesics (i.e. the shortest lines on the surface) are
determined by the differential equation

_«_1_( Fi Qv )= E,+2Fy + G

AU\VE +2Fv + Gv?) 2VE+2F0 + G

3. Minimum Surface of Revolution. Returning to the problem
proposed at the end of § 1, we see that Euler’s Equation here be-
comes

™ vigp-d_w__,
dz /1 + p?
Observing that %= p(;iy and performing the differentiations indi-
cated, we have, on reducing the result,
vp % =1+p%
Hence
dy _ pap_
y 1+p¥’
logy=4}log(1+p)+ G,
1)) m= %s

where we have replaced the constant of integration, C, by the
equally arbitrary constant, b, setting C=logb.
From (2) it follows that

d 2
p=d—£=i\‘%—1.

Hence

— b .
P—a=+ b logu.___bﬁ_—é-.
On solving this equation for y, we find :

y=2(eF+eF),
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the equation of a catenary, referred to the axis of « as directrix,
The seale to which the curve is drawn is arbitrary, as shown by the
constant b; and the location of the axis of y is also arbitrary, as
shown by the constant a. But the directrix is fixed.

To complete the solution of our problem, we must choose a and b
8o that the catenary will go through the two fixed points. Can
this always be done? There is evidence from mechanics on this
point; cf. Chap. XIV, §7. Let a heavy flexible string be hung
over two smooth pegs at the fixed points, and let its ends reach
down to the directrix, D, of the particular catenary in which it
hangs. Then it can be released at the fixed points and will not slip.
If D, perchance, coincides with the axis of x, our solution is com-
plete ; the part of the string between the pegs gives us the desired
catenary.

If D, on the other hand, lies above the axis of z, then a steady
lengthening of the string will bring it down, and when it reaches the
‘axis of , our problem is solved.

If, however, D lies below the axis of z, it may be possible to raise
D by shortening the string; but there is a limit, above which D
cannot go, ¢f. Chap. XTIV, § 7, Ex. 1, and if this }imit is below the
axis of z, our problem cannot be solved.

What does this mean for the minimum problem with which we
started ? Will there not always be a surface of revolution of least
v B area? No! If the fixed points are

very near the axis of revolution, in com-

parison with the distance between them,
« a surface of revolution generated by a

curve like the one indicated will have a

relatively small area, and these various
areas will have a certain lower limit, which can be shown to be the
sum of the areas of the two dises, whose radii are y, and y,. But
evidently no surface of revolution can be found which will have
quite go small an area,

Thus it is seen that a problem in the Calculus of Variations, which
it is easy to formulate, may not have a solution.

ol

F1ac. 104

4, The Brachystochrome. Let it be required to find the curve of
quickest descent, i.e. the form for a wire on which a smooth bead is
to slide, in order that the bead, leaving O from rest, may arrive at 4
in the shortest possible time.

\
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Chooring the axes as indicated, we have, for an arbitrary point of
the path (cf. Introduction to the Calculus, p. 375):

!
vt = 2gy; Y= g{- ’ 7] l,: z
O " ds v 4i(a)
7N AN Fa. 105
v2g.) Vy ta
and so it is a question of making the integral
3 a
@ J Mty
Vy
a minimum.

Enler’'s Equation here becomes

vi+pt,d_p
27 Ayt p

This reduces to the equation:
14290 _9p_ o

2) =0,

1+ p2dy
Integrating, we have:
14pr =2
y
Hence dy _ \/2 c—y
dz y

8 == YW iy g+ ccosti=d 0
V2ey — 42 ¢
Since the curve starts at the origin, C=0.
This is the equation of
a cyecloid,
(4) x=c6—csing,
y=c—ccosd

Fia. 106 To determine ¢, draw
the particular cycloid, for which ¢=1, and let the line 0A (pro-
duced, if necessary) cut it in 4'. Then, since all cycloids are similar,
c=04/04".
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§. Definition of the Variations. The arbitrary function 4 of §2
Is an Hlustration of what is known as a varéation, and since it is added
to y, it is denoted by &y and read: “ variation of y,”

@) n=d8y.
Its derivatives are denoted as the variations of the derivatives of y,
@ 7 =¥, 7"’ = 8y, eto.
Thus by definition
as d,
3 a0y _ 5%,

Variation of a Function, F(z,y,y,y", 2,2, «-+). Let F be a
function of z, y, ¥, ¥, -+, 2, 7/, -+, continuous together with its first
partial derivatives, and let y, 2, -.- be functions of the independent
variable @, continuous together with such of their derivatives as
enter in F. Let y, 2, --- receive variations 8y, 8z, .-.. The variation
of F'is defined as follows:

(4) 8F=Fg&.l/ +F,183/,+Fy"83/" + e +F',8z + F‘,SZ' +

Here, 8y, 8, .-- are chosen arbitrarily, subject to such conditions as
those we met in § 2.
The definition applies equally well in case there are several inde-

pendent variables.
The independent variable or variables are not varied. Thus
®) SF(:c, v, 4, z“ g“> F,5u+F,8p + F,%,
ou __Ou

p= 7z’ g= 3__1[ ’
where { = 3u is an arbitrary function, continuous together with its
partial derivatives
2 0
(6) ca=5t;=spi cyE@c:M’

throughout the region § in which u is considered, and required %o
be numerically small.

It 7= [Favy)a,
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then 8J is defined as follows :
[ 3
@ &= f (F, 8y + F, %) da.
Thus ‘

b 1] )
(®) 8J=f817'dz, or Sdez=f8F'dz.

It may bappen, however, that 8y is restricted so that a second
integral will have a constant value:

b
()] K= | &= y+8,y + 8 )dz
This can be accomplished by making 8y depend on a parameter, as
is done below in § 8.
For other forms of definition of variations, cf. Bolza, Variations-
rechnung, p. 45, § 8.

6. Euler’s Equation for Multiple Integrals. Consider the in-
tegral *

du Ou
@) J=ffF(z, Ytz 5;) ds.
S

Let u be the function which makes J a minimum. Give to « a
variation, 8u = { (%, y), where { vanishes on the boundary, C, of §:

(2) ZIc =0.

Then the function of e,
(3) J(“)='/:/IF(£:3/;u+“zsp+“tn9+u‘.)ds,
8
has & minimum when « = 0, and J’(0) = 0. Now, by Leibniz’s Rule,

dJ
(4) -4 = (cFu+c;Fp+C1F|)dS!
da Js‘f

* As to continuity it is assumed : (§) that F(=, ¥, %, p, ¢) i8 continuous, to-
gether with its partial derivatives of the first two orders, when (z, y, u) lies in
» given region, V, of space, and p, ¢ have any values whatever. Moreover, the
surface u = f (:é, ¥), for which the integral is formed, shall lie in V, and f(z, v)
shall be continuous, together with its# derivatives of the first two orders, in 8.
The same shall hold true for the varied surfaces, u + af.
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where ¥\, ¥, F, are formed for the arguments (», y, v +of, p + af,,
¢+ al,). On setting « = 0, we have, therefore,

(5) f (tFu+t-Fr+ch-)dS=0,

where these partial derivatives are formed for the arguments
@9 up 9

This equation corresponds to equation (3) of § 2, and, like that
onse, can be transformed by integration by parts. Since*

2 oF,
= @F)=LF,+ 150,

fft,F,dS=JtF,dy—ff{%d&

But { vanishes by hypothesis on the boundary, and so the line inte-
gral drops out.

On transforming the last integral in (§) by a similar method we
find, as the equivalent of (5):

(6) fft(F.—%-%)dS= 0.

Now ¢ is arbitrary, within the limits imposed. We can, there-
fore, infer that equation (6) is true in all cases only when the sec-
oond factor in the integrand vanishes at every point of S, or

- p _9F_9F,_,

Y dz oy
This is Euler’s Equation. In it, F, and F, are formed for the
arguments z, y, u, ou/0x, du/0y, where u denotes the function that
makes J & minimum. Thus ¥, and F, become functions of the two
independent variables, z and y, and the differentiations indicated
by the #’s are performed under this hypothesis.

Generalized Coordinates. It should be observed that, although
equation (5) holds for any system of coordinates whatever, equation
(7), dapending as it does on integration by parts, is restricted to the

we have:

¢ This is the transformation known as Green's Theorem; cof. Chap. XI,
$9.
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case of Cartesian coordinates. If curvilinear coordinates (A, ) be
introduced, then (Chap. XII, § 4)

(8) J= iff‘b('\t # %, p, @) D@3,
ou o 0
where F (2, ¥ w auy au> ‘b()‘a My Y, %9 2_::>’
==y = o= u
T ) P=a = o

and the integral is extended over that region, 3, of the Cartesian
(A, p)-plane, into which 8 is transformed by the equations which
correspond to the system of curvilinear coordinates :

©) A=f(zy), r=¢(z ).
Thus Euler’s Equation takes on the form :

2 2
(10) D&, — 5 (D) — - (D) =0.

EXERCISES

1. If u is a function which renders the integral
9u2 ou?
NAt e~

9 minimum, show that

O , Oy
— +-—=0
ox? + oyt
2. If uis a function which renders the integral

ACAEUIG

& minimum, ¥ and § being polar coordmates, show that

8’11
r ar2+ t

8. Show that Euler’s Equation for the volume integral

J= f f f F(z,9,% %5, 9 7) 4V,

—=0.
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! 0 o ou
where p=£, Q=5, re%

is:
: oF, 0F, 0OF,
F— L

. 63: By 0z 0

Explain carefully the meaning of each partial derivative.
4. If u is a function which renders the integral

e

2u , 0%y
=t o + o =

8. If 4 is a function which renders the integral
du\2 |, 1 /0u\? 1 ou\?
S S G +5G) + s () 147
a minimum, where (v, ¢,6) are spherical polar coordinates, show
0 f a3 5 0u 0 1 2%
P (’ sin ¢ ar) + a¢(5“‘ A a¢) tomee

8. Minimum Surface. A surface, z = f(z,y), is spanned into a
simple closed twisted curve. 8how that, if its area

f ViFFFgds

is to be a minimum, then
2
(1+q)3m2 2p9333y+( +p’)a =

7. If the integrand of the double integral contains the second

derivatives,
% 0y

3_33 8= t=-—,
oz’ oz oy’ oy
8o that we have:

J=ffp(”: Y %P, q, 18048,
2

P
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N
show that Euler’s Equation becomes
_23F, 0F, PF, ®F,  &F,
At Yoy T =

8. Extend Ex, 7 to volume integrals.

7. Laplace’s Equation in Curvilinear Coordinates. Dirichlet’s
Pringiple. A classical problem of mathematical physics is the fol-
lowing, known as the (first) boundary value problem for Laplace’s
equation: To find a function, w, which throughout a given region ¥
of space satisfies Laplace’s equation,

Ou | 0w, O _

ot 72 o oy Yo 0,
and which, moreover, takes on given boundary values along the
boundary of V.

The mathematicians of the middle of the nineteenth century
sought to solve the problem of showing that such a function
always exists by formulating a problem in the calculus of vari-
ations, which is identical with the original problem, and the answer
to which seemed to them self-evident. They considered, namely,
the integral

&) f J f +(Z’z‘) }dV

extended throughout the given region, the function u being required
to be continuous, together with its derivatives of the first two orders,
and to take on the given boundary values. Euler’s Equation for
this problem is (§ 6, Ex. 4) precisely Laplace’s equation. Now, the
integrand of the integral (1) is never negative, and so the value of
the integral cannot be negative. It is evident, therefore, that the
value of the integral, corresponding to various choices of u, has a
lower limit which is not negative; i.e. that there exists a constant
A = 0 such that, if ¢ be as small a positive constant as you please,
there will be some function u for which the value of the integral
will be less than 44 ¢ But how do we know that there is a func-
tion u for which the value of the integral reaches this lower limit, 47
We have seen, in the case of the minimum surface of revolution,
that a perfectly well appearing problem of the calculus of variations
may have no solution. A lower limit may exist when & minimum
does not. What is the lower limit of the positive numbers? What
is the amgllest positive number ?
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Weierstrass pointed out the fallacy in the assumption that there
must be a function u for which the integral reaches its lower limi¢,
and thus this method of proving the existence theorem for Laplace’s
equation — the method known as Dirichlet’s Principle —fell to the
ground.

If, on the other hand, we have a solution, u, of Laplace’s equation,
it can be shown that this function makes the integral (1) a mini-
mum, and hence the problem of the calculus of variations does have
a solution. For,let UU=u 4 % be any other function of the class
admitted to competition, and form the integral (1) for U. Thus we

NG +<z>}dv
+fff )2

The value of the second integral is seen by Green’s Theorem to be
0; cf Chap. XI, §9, Ex. 2, in which the v and v are to be replaced
by the present & and u respectively, and observe that k vanishes on
the boundary.

The value of the last integral is positive, unless h = const. But
since ik = 0 on the boundary, the constant would be zero, and thus
U would = u.

Laplace’s Equation. This result is important in practice, since
it enables us to simplify the computation of Laplace’s equation in
curvilinear coordinates. Let

@ A=f(2, 9, 2), r=$(x, y, 2), v=y(%, Y, %)

be the equations of three families of surfaces (A, u, v being parame-
ters), and let each surface of any one family cut each surface of any
other family orthogonally. The relations existing between the partial
derivatives of these functions and those of the inverse functions are
developed in Chap. VI, § 6,and it is there shown in particular that

® Gy+Cy+& -G+ x&"

A @49, VEHE.
® il e
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Thus the integral (1), when transformed to the curvilinear coordi-
nates A,p, v becomes (save as to sign)

O [fBE A ALY v

where = denotes the region of the (A, u, v)-space which eorresponds

to the given region V of the (z,y,z)-space. Since a function, u,

which satisfies Laplace’s equation, makes the integral (1) a mini-

mum, such a funetion must also make the integral (5) a minimum.
Euler’'s Equation now takes on the form:

2 ( H, I, o\ | 8 ( [HH ow\ 0 ( [HH 0 _
©®  &\WH, 9*>+3#< H, 5#>+3_v< H, 3V>_O’

and this i3 Laplace’s equation in orthogonal curvilinear coordinates.*

Example. Let the curvilinear coordinates be spherical polar coor-
dinates :

2 =rsin ¢ cos 6, y=rsin¢singd, z=rcosd.

Then H =1, Hy=1 H; = r?sin’¢;

Su\e |, fBuN: | [Ou\2__ fouN\? | 1 [0u\? 1 du\?,
® (&) + G+ @)= mGe) + s )
J = r2gin ¢.

Laplace’s equation becomes:

0 . O o/f. ,ou 1 Pu _
9 8_1-<Tzsm¢5;>+%<sm¢5$)+—-—sin 3 502 =0.

# For a treatment purely by partial differentiation, in which, moreover, the
identity

2
) L8 2, 2

oz2 | oy 022

—— [ L (R + 2 (B +£(J§Ea.u)]

VEHH LM N H, ax) w\Y H, au) w\V Hy o
is established, cf. Goursat-Hedrick, Mathematical Analysis, vol. I, Chap. II,
§48. The more general case of the Exercise below is treated on the basis of
the vanishing of the variation, and not of the minimum property, by Courant
and Hilbert, Methoden der mathematischen Physik, vol. I, p. 184, Why should
the vanishing of the variation be independent of the choice of the coordinates ?

The proof given in the text is in one respect incomplete, since the uniquenesd
of the squation (8) has not been established.
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EXERCISE

Let the requirement be removed from the transformation (2) that
it be orthogonal. Then

0 () G+ 4

Ou Gu Qu du 3u du
2 bkt
+2Bgnt Bigy a2 By on o’
where Ay = A, Ay = A, Ay = Ay,
=A(g ¥) B =A(v 7), By= A, p),

the notation A (A, x) standing for the first polar of 4, with respect ta

op Op Ou
(33’ oy’ 02)’ or
_ A Al D

A= dxox Oy oy ta% 62:
Moreover,
4, By B,
=B, 4, B, g_t(z’ ;, z)) L J= Z ((i, ¥ :)2
B, B, 4, ' '

Show that Laplace’s equation is the following :

53'[(‘4’3,\"'3‘3 + By )]
+§[(B£“+Azn +B, >J]

) ou au
+2 [(B’aﬁ Y J]

8. Isoperimetric Problems. Consider the problem of joining two
points by a curve of given length, so chosen that the area enclosed
between the curve and its chord will be a maximum. The area is

given by the integral ) b
v 1) J= |yde;
z a
e o b the length of the curve is

@ Iudez.
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And now not all functions y which correspond to curves joining the
two fixed points may be admitted to competition, but only such as
make the second integral equal to I.

The foregoing example is typical for the general case. Let
F(z, y, p) and & (2, y, p) be two functions which, together with their
derivatives of the first two orders, are continuous, where (z, y) is
any point of a given region 8, and p has any value whatever.
Form the integrals:

@ J= f F@y,v)d, K= [o@y,y)ds

the curve y = f(x) lying in 8. To find that function, y, of = which
will make the first integral 2 minimum (or a maximum), while giv-
ing to the second integral a preassigned fixed value, K.

We proceed to deduce a necessary condition in the form of Euler’s
Equation for the present case. Let » and { be two functions which
satisfy the conditions imposed on yin § 2. Let us try to determine
B a8 a function of « such that

)
@ eB)= @ y+an+pl y+ay+Bl)dr—K
will always = 0. Here, 02 («, B) is a continuous function of the two
independent variables, « and B; moreover, it has a continuous
partial derivative with respect to 8 (Chap. XIX, § 1),

@ Z—g= f (@, +'0,) dz,

where ®, and ¢, are formed for the arguments

(@ y+ag+ Bt ¥ + oy + BL)-
If this derivative, {,(«, 8), does not vanish at the origin, then the
theorem on implicit functions, Chap. V, § 12, tells us that there
exists a function, ¢ (), continuous in the neighborhood of the origin
and vanishing there, such that the equation

® (e, f)=0
will be satisfied if B = & (a).

Now, 2,(0, 0) is given by (4), where &, and @, are to be formed
for the arguments (z,y,3'). The integral of the second term can be
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transformed as in § 2, and hence we have:

® 0,(0,0) = j t(@,—%)dz.

It is obviously possible to choose { so that this last integral will not
vanish unless the second factor in the integrand, &, — d®,/dx, van-
ishes identically. As a matter of fact, this case does not arise in
practice, and so we choose , once for all, so that 0,(0, 0) % 0.

‘We can now choose 4 arbitrarily and then, for any a« numerically
not too large, determine 8 so that O (e, 8) = 0; i.e. the second inte-
gral in (A) has the required value.

The first integral in (4), formed for the function ¥'= y + ay + B¢,
is a function of a which has a minimum when «=0. Hence
(dJ/da)ao =0. Now,

@ do= 10+ BOF, + 6 +FOF, az

- f F, +7F)dz+ B f (CF,+ UF) dz,

where F, and ¥, are formed for the arguments (z,y+ en+ 8¢
Y + oy + BL). Let a=0; then B=0, and since

r . ale, B)
@®) B = 0, (e B)’
we have: ,
f (02, + 7' ®,)de
) Blaa=—" .
S o, +re)as

Subsatitute this value of B8’ in (7), written for «=0. If we set

j(CF. +{'F,)dz

(10) A=

f (e, + C"',)‘h



CALCULUS OF VARIATIONS 425

the new equation becomes :

1] ]
Jor+ima s fae, +ye) @m0,

or

1
1) f{,,p, +m>,+,,'p,+,\¢,}dx=o.

Now this is precisely equation (3) of § 2, written for the function
F 4 @ instead of F. It can be transformed as before by integra-
tion by parts, and thus we find :

(12) (F, +32,) = L(F, +22,) =0.

This is Euler’s Equation in the parametric case. It expresses a
necessary condition for a minimum (or maximum) in terms of an
unknown constant, A. The extremals depend on A, and on the two
further constants of integration.

Ezample. Recurring to the example with which the paragraph
opened, we have:
F+ao=y+AVIitpt

Thus Euler’s Equation becomes :

_9_Ap  _
dz /1 4 p?

Hence o
V14 p?
= (= |

Thus P* N—(m o

y=1+ __i"’_j_‘i)di_ FVNZ (z— o) +d,

VN = (z—c)

or

(—c)+(y—dP=A%

The extremal is, therefore, the arc of a circle joining the two
points and having the prescribed length. The two constants of
integration, ¢ and d, and the constant A of Eunler’s Equation are just
sufficient to permit the fulfilment of the above conditions.
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. EXERCISES

1. Two fixed points are joined by a uniform heavy wire of given
length, which may be bent into any shape. Assuming that there is
a form of the wire for which the centre of gravity is lowest, show
that this form is the catenary in the vertical plane through the given
points.* The extremals are the curves

y+h=§<e'3“'+e"+')-

2. Extend the method of the text to double integrals, and show
that, if

J=ffF(z) ¥ %, p, Q) dS, K= f@(‘”r ¥ % p, 9)d8S,
F) 3

where K is to remain constant, then a necessary condition that J be
a maximum or a minimum is given in the form of Euler’s Equation :

F,+A<Du—-2F,+A¢,—§-yF,+A¢'=0.

ox

8. Let S be a region of the (=z,y)-plane, bounded by a simple
closed crrve, C'; and let a cylinder Z be erected on O with its ele-
ments parallel to the axis of z. Let a simple closed (twisted) curve
€ be drawn on Z above the (z, y)-plane. To find the surface of least
area which, together with S and the part of Z between C and €, will
enclose a given volume,

Ans. If 2= f(x, y) is the equation of the surface, Euler's Equation
becomes :

(A+q)r—2pget(L4p)t_,
@+t + o) ’
where r=§2 a=i’g_ z—ﬁ’_‘.
oz’ oy oy

The geometric meaning of the result is that the surface is one of

constant mean curvature. The surface can be realized physically
by means of a soap bubble film spanned into @, sufficient air being

* The result is altogether reasonable. For, if the wire be thought of as a wet
string, frozen in a particular shape, and then allowed to thaw, the string will
then change its shape (unless it was a catenary to begin with) and this mesns
precisely to our mechanical intuition that the centre of gravity has fallen. So
10 shape but the catenary can yield s minimum.
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forced into the closed region above mentioned (or withdrawn from
it) to yield the given volume. Cf. Bolza, Variationsrechnung, p. 662.

9. Variable End Points. I.et it be required to find the minimum
surface of revolution when the generating curve is to have one end
point, 4, fixed and the other, B, on a fixed
circle. It is clear that the curve must bea |4
catenary ; but it is not clear at what point,
B, it meets the given circle.

This example is typical for the general
case of the integral

[ TR

Fia. 108

(1) . J=fF(z’ Y, 3/') dz, ol a

where all the curves y =f(#) admitted to competition start from
one and the same fixed point, 4, but end at any point of a given
curve
T: ¥ = ¢(),
where ¢ () is continuous, together with its first derivative.

First of all, it is clear that a necessary condition for the function
y which makes the integral a minimum (or a maximum) is that it
be an extremal, i.e. a solution of Euler’s Equation. For, an admis-
sible set of varied curves is that for which both end points are fixed,
and this is the case of § 2.
. Next, let a pencil of varied curves C be chosen as follows. Sup-

pose the extremal 1

'l 4 g/ y =1(=), a<z<b,
¢ ;iBOB to be the solution of the problem, and sup-

s £ pose C can be extended slightly beyond B,
Fro. 109 ’ Thus f(x) will be continuous, together with
its first derivative, throughout a somewhat

larger interval,a < z < b/, where b’ > b, and will still satisfy Euler’s

Equation.

Let y = »(z) be chosen continuous, together w1th its first derivative,

in the above interval, and let

@ n(a) =0, 7(5) # 0.
Then € shall be defined by the equation :

¢: y=y+ ky,

o
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where y = f(#) and where % is so chosen that { goes through B, or

®) SO+ kq(®) = $(0).
Let b = by +e Then k=%(c) is given by the equation:
IR YT OEF((CED)
® HO=T et 9

Since ¢(by) == f(Dy), it follows that k(0)=0 and/
() k'(o)=¢'(llo)-f£bo)=tan”'—y" ,
7(%) 7 ey

where » denotes the angle from the axis of z to the tangent to T
Consider the integral J formed for the varied curve . It is a
function of «:

J(¢)==fF(z, y+k17, y’+k7,’)dz,

and it has a minimum (or maxzimum) when ¢ = 0. Hence

(dJ/de) = 0.
Now .

(%c—)c_,,': f {k’(O) 17, + ¥(0) n’F,,} dz + FL‘.

The integral can be transformed by integration by parts,asin § 2:

% B
fﬂ’F,;d.’D:qF,, "—f'r]g—F-lfdz.
A dw
Thus

(%),_f k’(O)jy,(F, - %) dz + {k'(o) vF, +F}_~ =0.

This latter integral vanishes, since y is an extremal. On substitut-
ing for &'(0) its value from (5), we have:

(tanw — YV F,, + F =0, .

or
(6) F,sinw+(F — y'F,) cos =0,

where the functions F, F,, are formed for the point 2 == by, ¥ = f{(b),
¥ =f"(b,). This is the condition we set out to obtain.

Similarly, the right-hand end point may be fixed and the left-hand
one variable. In that case, a condition of the same form as (6) holds
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ﬂfm the left-hand end point. O, finally. both end points may be va-
riable, and we then have the two equations (6) holding independently.

The Catenary. Returning now to the example with which the
paragraph began, we have

F(z, ¥, )=y V1 + ¢2
Thus (6) gives here: @6 ¥)=yVity

ta.nw=-—-1—',
Y

or the catenary meets the circle at right angles.
+ The Isoperimetric Case,

b b
J=fF(z,y,y’)dx, =f¢(m’.’/,y’)d9"-

Here we introduce the varied curve

C: y=y+kg+1{
and determine k and ! from the equations
b

E= Jo@y+ky+1l, v+ Fky +1{)dz,

& (B +€) = f (o + ) + KBy + ) +1L(bo+ o).

These equations can be solved for k and [, provided the Jacobian

oK K
ok d =+ 0.
Vi f =0

The functions » and { can be chosen 8o that this condition will be
fulfilled unless

b
f(qd’, +9 d’,:) dz

vanishes for all choices of y. This difficulty does not occur in the
cases which arise in practice.

Instead next of setting (8J/0¢)o =0, it will be more convenient
to consider the integral

j{F(w,y,mH@(z,y,y')}dx,
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which is merely J<4 const. On requiring that its derivative with
raspect $o ¢ vanish for ¢ =0, we are led first to the condition
iy )

f { (K + VO F, 128, + (y + V1) Fy + 30, } 02+ F + 2By, =0,

From this point on the analysis is similar to that of the earlier
cage, and we find as the analogue of (6) the equation

M  FFassine+{Frae—yF+ X%, } o8 @ = 0.

EXERCISES

1. A uniform flexible heavy string has its ends fastened to
weightless rings which slide on smooth fixed wires in a vertical
plane. Show that, when the string is in equilibrium, it meets the
wires at right angles.

2. A variable curve C of given length connects two fixed curves,
C, and C,, which lie above the axis of . Show that, when the area
bounded by C, the two ordinates at its extremities, and the axis of
18 least, C does pot in general meet C; or C, at right angles.

8. If, in the preceding question, the area bounded by C, C, and
C; (where now C; and C; are supposed to meet under C) is to be
made a minimum, then C will meet C; and C, at right angles.

10. Parametric Form and the so-called  Variation of the Inde-
pendent Variable.” In the integral

b
— gﬂ
@ J fF (z, y,dw>d:c
let the curve y = f(«) be represented parametrically:
® z=¢(r), y=y(r), TwTETSTY

where ¢ and ¢ are continuous, together with their first derivatives,
and the latter do not vanish simultaneously. Let

d_ Y oy dy
® by, Wy, By
Then .

@ i J= f o (2, y, z, A'/;-) dr,

%o
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where
®@,y,2,y) = F(z, v g;) .

T

Euler’s Equation here takes on the form :

d
5 —_——,, = — —d— =
©) = g =0 ®r =g b, =0
Since
d d
Q' —d—ny;’= wa:. —d_.rF"I= mL<Fﬂ -—-%Fyl)’
it is seen that the second of these equations is equivalent to Euler's
Equation in the earlier form,

©) F,— L F, =0,
provided ¢'(r)=+ 0.
Let z and y receive the variations ¢ and 5 respectively,* where,

however, we no longer demand that ¢,  vanish at the extremities
of the interval, (ry, ry). Then

) 8 = f E®, +7®, + £, + 1/®,) dr.
In terms of F'the integral has the value:
71 .
® = f (€,F, + 92, F, + & [F~ L F,]1+9F,)dr.

If, in particular, ¢/ (r) > 0 throughout the interval, it is possible
to change the variable of integration from 7 to z, and thus

© &= [lenretF-yRI4om 4y, e

® The varied curve,
X=z+E=9(r), Y=y+9p=¥() TSTSN,

is known as 8 strong variation, since its slope no longer necessarily differs but
slightly from that of the original curve at corresponding point,s. Indeed, Y is
not necessarily a single-valued function of X. But §, », £,, »,, are assumed to
be continuous and numerically small throughout the interval, and thub &' (r)
and ¥/(r) will not vanish simultansously. In distinction, the varied curve of
§ 1 is called & weak variation.
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Thig integral can be transformed by integration by parts, as was
done in & 'similar case in § 2, with the result

9 s.r=j{e(p', ~Zr- y'F,,])-g_,,(F,-%)}dz

)
+ {s[zr-— YF1+0F,) "
Since
SF-yF1=F.+yF,—y %y,

we can give to 8J the form:

1) w-f(&y o) (F, ~ 70 )ae

+ {[F— YF,)&+F, Sy}:,

where 8z=¢ zad dy=~x

If ¢ and 5 are required to vanish at the end points of the interval
the last term drops out. Formula (11) still holds true, even when
this condition is not imposed, provided §x and 8y are suitably de-
fined ; but a more elaborate definition of these variations is there
needed . *

“ Variation of the Independent Variable.”” We can, in particular,
allow the function ¢(r) to be the function . Then the first of
equations (2) becomes 2 =r. The variation, ¢ of this function is,
however, no more and no less general than before, and since
4’ (r) > 0 here, we arrive at the same final result, namely, equation
(11). Because the dependent variable x is here squal to the inde-
pendent variable r, this case is sometimes described as the “ varia-
tion of the independent variable.” But the expression is misleading

& Cf. the admirable treatment of this point in Bolza, Vorlesungen ilber Vari-
ationsrechnung, p. 456. One of the weak points in the use of the Calculus of
Variastions in physiocs lies in the tacit assumption that the variations reguire no
particular definition, for everyone knows what 3y, 3J, etc., mean. As a matter
of fact, their definition, except in the simplest cases like those of §§2, 6, is an
exceedingly delicate matter, and Bolza’s contribution is most valuable.

Even in so simple a matter as the isoperimetric problem of § 8 the foregoing
definitions of 3y, 8y’ (§5), will not lead to the equation 3K == 0, for this equa-
tion 'will not be true; but suitably modified definjtions of 3y, 3y will lead to
the equation 8K =0 as a necessary condition.



CALCULUS OF VARIATIONS 438

if taken literally, for it is a contradiction in terms, — we do not
define “variation” for other than dependent varigbles. The
language is of a piece with that used to deseribe the method in
differential equations known as the “variation of constants” , and
with the expression “an infinitesimal constant.” It is little short
of an Irish bull.

EXERCISES
1. Extend the method to the isoperimetric case,

3 3

J=fF(m, v, ¥') dz, K=f<1>(w, YY) de

a a

and show that here equation (11) becomes

3
12) 8J=f(8y—-y’8:c){Fv+)\<l>,-—%Fv,+k<l>,,}dz+

{[F+ Ao —y F, + A8, 1% + F, + m:s;,}:-

2. Extend the method to multiple integrals and show that, for
the double integral

du 0
J=ffF<a:,y,u,a—:, 5‘:7‘)413,
8

equation (11) becomes
0 9
13) 8J= f f (3w — u, 30 — u,sy)(m ~mFu g F,,> ds,
s

provided that the variations Sx=¢ 8y=19, Su=¢ all vanish
identically on the boundary. Otherwise, a line integral must be
added, which is the counterpart of the last term in (11).
Suggestion. Develop first the formulas which correspond to (4),
(7), and (8), when
z=dp),  Y=¥( ),

remembering that (cf. p. 150, Ex. 31)

o __d(uy) /32 y) du_0(z,u) [z, y).
o )/ 00N R T VAR Tr ™)
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8. Work Ex. 2 for the volume integral ¢

J=IJfF(¢1y:z:“:g'§’g“;,gz—g)dE

writing down in advance by inspection the probable answer.

11. Hamilton’s Principle. Consider a single particle, of mass m,
situated at any point P:(z, y, #) and acted on by the attraction of
a particle situated at the origin. The magnitude of the force,
measured in the absolute units of dynamics, will be m)/r?, and ita
eomponents,

=—mZ =—mr¥ =—mrZ.
1 X mA & Y mA et Z mA 2
There exists a force function (p. 146):
@) v="2,

whose derivative in any direction gives the component of the force
in that direction. In particular, it is seen that

2U_ log 2U_
® o = Gy = O oz

The motion of m under the influence of the force that acts is
determined by Newton’s Second Law of Motion, Introduction to the
Cualculus, Chap. XIII, §1:

p dz Py _ d*z _
(4) mat,“ﬂx, maﬁ—-Y; i mdt:

Its path is represented most naturally in parametric form, the time
t being the parameter:

® z = f(t), y= (1), z=y(t)
Hamilton’s Integral. Consider the integral :

(6) I=f(T+ N,
where . .
T=jm@ +yt+4),  é=22, oo

dt
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denotes the kinetic energy, and U, the force function (2), is the
negative of the potential energy. This integral has an altogether
definite value for the actual motion of the particle under the action
of the given force. We can, however (by applying suitable extra-
neous forces), cause the particle to go from its first position at
(%05 Y %) to its second position-at (xz;, y,, 2,) along a different path,
and we can choose arbitrarily the law of the velocity it shall have
along this path. We will, however, agree that the total time from
the first position to the second shall be the same as in the case of
the natural motion. The integral I will have a definite value for
this second path, and it will be positive, since the integrand is
positive. .

The totality of such values of the integral must have a lower
limit, and it is not unlikely that, for some path, this lower limit
will actually be realized, and thus the integral will have a minimum.
A necessary condition that this be the case is that Euler’s Equation
be satisfied ; i.e. that

@) AT+ U)_d¥T+U)_
ox de o B
diz
or mW—X.

with two similar equations for y and 2. But these three equations
are precisely the equations (4) which govern the free motion, with
no extraneous forces acting.

We may say, therefore, assuming that there is one and only one
path which makes Hamilton’s Integral a minimum, that this is the
path the particle will follow when acted on only by the forces given
at the outset, and we are thus led to

Hamrrron’s Principre. The path which the particle follows when
acted on by the given forces is the path that makes Hamilton’s Integral
a mintmum.

The case of a system of n particles, m,: (z,, ¥,, 2.), attracted by »
fixed particles under the law of universal gravitation admits a pre-
cisely similar treatment. Here

®  T=3E 9+, U=3 ",
= 2 s T

it = (@ — a)* +(y — by)? +(z, —¢)%
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. The integral (6) has the same form as before, and the 3» equations
of Enler are precisély the 3n equationa given by Newton’s Becond
Law of Motion, applied to each of the n particles, namely :

(9) Q’P—I:-ag’ @y, 90U éz—z‘!='a_q- i=1:29"‘vn'

™G om T de d  an o
Thus in this case we have proved Hamilton’s Principle mathemat-
fcally by means of Newton’s Second Law, assuming that Hamilton’s
Integral has a minimum. And now we extend that Principle to
cases not covered by other physical laws and make that Principle
the defining element, the new physical postulate.* But the above
form of statement, namely, as & minimﬁm principle, is not to be re-
tained, as is shown by Example 2 below. It is rather the stationary
prineiple, which consists in requiring that the variation of the inte-
gral (6) vanish, or 87 =0.

GENERALIZED ForM oF Hawmivton’s PrRINCIPLE. Let the kinetic
energy of a material system be denoted by T, and its potential energy by
—U. Then its motion is suck that the variation of Hamilton’s Integral
vanishes .

LY

8f(T+U)dt=0.

Here, I, and t, are any two values of the time, t, which is the variable
of integration, and hence the independent variable of the function T + U.
Only such variations are considered as leave the end points fived; i.e. f
and t; are fived, and all the dependent variables{but not their deriva-
tives) must, for all variations, preserve the same value when t=t,,
and their values for t = t; must likewise be preserved.t

Ezample 1. Consider a system of particles having n degrees of
freedom, but subjected to smooth constraints that are not moving.
Let the natural coordinates of the system be ¢y, -, g,, and let the

% A ¢ Principle " in Mechanics has been well described by Mr. B. O. Koop-
man a8 follows : ¢ According to the usage of the present day the word principle
in physics has lost its metaphysical implication, and now denotes & physical
truth of & certain importance and generality. Like all physical truths, it rests
ultimately on experiment ; but whether it is taken a8 a phygical law, or appesrs
as & consequence of physical laws already laid down, does not matter."”

1 We add the remark, which would be superfluous except for great confusion
shown in the literature, that in Hamilton’s Principle the time can not be varied.
Of conrse it cannot, for to * vary the independent variable” js to introduce &
oontradiction in terms, to do violencs to the definition of 8 variation; ¢/ §10.
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kinetis energy be ‘
T= ZA”Q“Q’” i)j—":l’ ey

where A, is a function of ¢,,...,q,. Let the forces form a conserva-
tive system, and let the potential emergy under these forces be a
function of gy, ---, ¢,. Let the negative of the potential energy be
denoted by U. Then a necessary and sufficient condition for the

motion of the system is given by the vanishing of the variation of
Hamilton’s Integral : ‘

Sf(T+U)dt=0.

For, Euler’s Equations here become

40T AT +U)_ .
dtaq."i‘ aq“ ‘T‘O) ‘=1; ey M,

and these are precisely Lagrange’s Equations,

Example 2. To find the differential equation of the vibrating
string. Consider, for example, the motion of a piano string or a
violin string, the ends of which are fixed. Let the motion take place
in a fixed piane, and assume (7) that no point of the string moves far
from its position when the whole string is at rest; and (i%) that the
greatest angle which the string makes at any point with its line of
equilibrium is small.

Approximations are now introduced as follows. (a) The compo-
nent of the motion of any point parallel to the axis of = (Fig. 96) is
neglected, and thus the kinetic energy is given by the integral

1
o\ 2
— el%
T—J2<6t) dz,

where p denotes the density of the string, assumed constant.

() The potential energy is proportional to the square of the
stretching, assumed uniform: s?=(/' — )% Let o= —1 Then,
¥ —l=0+(—1), and thus the potential energy, diminished by a
constant, is apprcximately proportional to o, since o2 can be neglected.
Now .

¢=f‘/1+<%>ﬂdz—l.
0

Since dy/dz is small by hypothesis, the radical is seen to be ap-
proximately equal to 1 4 }(dy/0z)?, and hence U, which is the
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negative of the potential energy, is given approximately by the

expression :
]
= [—2(%Y'
v f 2(3:0) d,

where p is a constant.
We thus arrive at the following form for Hamilton’s Integral,
corr¢gsponding to the above approximations :

Jeoa= [ [le@)-5(E)we

This is equivalent to the double integral of the bracket, extended
over the fixed rectangle f, £ ¢t <f,; 0 £z £ ! And now Hamil-
ton’s Principle consists in setting the variation of this integral equal
to zero. From this condition follows, as a necessary condition,
Euler's Equation, and thus we have:

of e\ _2/(, %\
az(" a;) 3x<p 3:0) 0,

?i!_—_az »

e o’ ot =p/p,

a8 the differential equation of the vibrating string.

It would be a mistake, however, to think that Hamilton’s Integral
attains its minimum value when y is a solution of Euler’s Equation.
Consider the case p=p =2, a=1, I== Then

= {102y = (2 awaes 2y_2y,
d f ,/‘ [(az) (amﬂd”d" o

A solution of Euler’s Equation is here
y=sin¢sina
Let y be varied as follows:
Y=y9+1 {==hsin3’:—l(f-_:fﬂzinm¢,

where h is a constant which may be chosen arbitrarily small, and n
and m are integers. Then
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J 50 - (0 o (- e
+ j f (2f:%%—2i',%)dmdt+ j j [(Z—f)’—(%)’]dxdz.

The first integral in the last line vanishes because it is the varia-
tion of I, formed for the extremal y. And now the last integral can
be computed directly and is seen to have the value:

h? | #tn?
T{t1—to—m2(tl_t0) }
By giving m and » suitable values, we can make the brace change sign.

Thus Hamilton’s Integral is in this case neither a maximum nor a
minimum for the extremal y; but it is none the less stationary, for
its variation vanishes.

Example 2 illustrates a further point. Hamilton’s Principle as
stated above applies to the simple integral (6), and it is the varia-
tion of this integral that is to vanish. But in solving the problem
of Example 2 we have set the variation of a wholly different inte-
gral — the double integral ~—equal to 0. Clearly, it must be shown
that these two conditions are equivalent. It is not difficult to do
8o in this case,and the student will do well to work out the proof.
The incident brings out clearly the fact that Hamilton’s Principle
depends for its very statement on the definition of wariation (8), and
so the formulation of this definition must precede any application
of the Principle. This question is treated by Bolza; cf. the refer-
ence given above in § 10,

EXERCISES
1. If the string is allowed to vibrate in three dimensions, show
that its motion is governed by the simultaneous equations:
Py _ oy P a0

L =q?
o ox?’ o ox?
8. Let the string vibrate longitudinally, i.e. in its own line, and
let a point which, at rest, had the coordinate 2 have the coordinate
@y =2 + u. Show that

Pu_ a0,
o o
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The suost general motion of the string is a superposition of the
motions of Ex. 1and 2.

8. Vibrating Membrane. Consider a vibrating membrane, like a
drum-head, whose position of equilibrium is in the (z, y)-plane. If
its points move approximately in right lines orthogonal to the plane;
if, moreover, their excursions are small and the tangent plane to the
distorted surface makes at most a small angle with the (z, y)-plane,
then the potential energy is approxima.tely

tLSIE @)

Find the kinetic energy, 7, and show that the differential equation
which governs the motion is

Pz _ o[ 0%
oot a{@z’+9y2}

4. Vibrating Rod. Let a uniform straight rod vibrate in a fixed
plane, It is assumed not only that the displacements of the points
of the rod are small, but also that the angle which the rod makes at
any point with its position of rest is so small that the contribution
to the potential energy due to the change in length of the rod is
negligible. It can then be shown that the potential energy of the
rod is proportional to the integral of the square of the curvature
Show that Hamilton’s Integral here becomes

ff o(Z2) |t

and hence Euler’s Equation takes the form

Pu o 0u s C

w0 a=

5. Vibrating Plate. Let a uniform plane plate vibrate trans-

versely. It is assumed that the normal at any point makes so

small an angle with the plane of rest, the (x, y)-plane, that the con-

tribution to the potential energy due to the inclination of the normal

is negligible. The equation of the plate, in the neighborhood of any
point (%, %, %), is then approximately

ums ax’® +-2h2'y + by, =z +2, y=y+y.
The potential energy of the plate can be shown to be the double
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integral of & homogeneous quadratic expression in the three cosffi-

cients a=13’u 1 o2y 1%y
F Wy == —— b=z o>

2 ozt 2 dxdy’ 2 o2

Since this expression must clearly be invariant of a rotation of the

axes, it must depend on the two invariants of the above quadratic

form, namely,

+ %o + o2 (mean curvature)

B=ab— k2= —1— = total curvature,
P1pP2

Hence the expression must be of the form

AD? 4+ u@,
where X and u are physical constants depending on the plate. We
have, then, finally for the potential energy the expression

A PuN:, plf 02w \?_ O%w O%u ‘
f f {2(3x2+ ayz) +§[(azay> 5525&3]}‘1&
8§

Show that the differential equation of the vibrating plate is

%y A (a‘u HAu 3‘u>

por T Mo T Vaaag Y o) =

P

6. Propagation of Sound. In the case of sound waves it can be
shown that the potential energy of the medium (air, water, iron, ete.)
in which the disturbance takes place is proportional approximately to

Jfseye

where u denotes the velocity potential which governs the motion of
the individual particles (more properly, of the points of the material
distribution). The kinetic energy is proportional approximately to

NIRRT

Show that the partial differential equation which governs the phe-
nomenon of sound waves is

Pu_ 5[ Pu @l‘ Pu
—aﬁ-—c{ax’+ay2+az2}’

where u denotes the velocity potential.
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18, Jeast Aotion. Let us consider, with Jacobi, the following
integral, known as the action :

@ U= f VZ(U+h) VTds,

where, as before, T and U denote respectively the kinetic energy and
the negative of the potential energy, and k is a constant so chosen
that, in the actual motion, i.e. the motion of the system under the
action of the given forces,

2 T=U+h.

We impose now, however, a further restriction, namely, that neither
T nor U shall depend explicitly on t. 1t is assumed that U depends
only on the coordinates of the system, and not on their time deriva-
tives. The integral thus ceases to depend on ¢,— at least in those
cases in which 7' is a homogeneous quadratic form in the time de-
rivatives of the coordinates of the system, as, for example, when

(3) T= 'Ln" Inz + yaz + zlo'Q]’
25t

or when T, in terms of the so-called natural coordinates, qy, ¢z, *++, gy
of the system, has the form

(4) T=2AiiQ‘IQI)
“J

where A4,; depends on ¢, -+, ¢,, but not on their time derivatives.
In these cases we may eliminate ¢ even in form by introducing a
parameter, r, which lies in a fixed interval, ) £ r £ r;, and setting

®) t=¢(r),
where ¢/(r) and ¢'(r) are continuous in the above interval, and
¢’(r) > 0 at all points of the interval.

Thus the motion of the system is described completely in terms of
the parameter r. Let

© 8= Mm -yt + 4], =25, oto.
[
Then
: dr
) s=1%,

and the action, ¥, assumes the form:
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(3) ﬁ:f‘\/2(U+h)'\/§dr.

To

We now proceed to vary the path, holding the end points (2f, 4, 20)
and (x}, 4}, 2}) fast. Through the application of suitable extraneous
forces we can cause the system to describe the varied path at any
rate we choose. And now we make use of this freedom of choice to
demand that the rate at which the system describes the varied path shall
be such that, at each instant,

9 T=U+h
along the varied path.

This last condition has as a consequence that the time will not in
general be the same for the varied path. Why should it be ?

Sinee the force function, U, depends only on the position of the
individual particles, T is determined by (9) as a function of r.
But 8 is also determined by definition as a function of 7, Hence ¢
is determined as a function of = by (7), or

(10) t= f \/;i dr.

The Minimum Principle. Among all possible paths, it is reasona-
ble to inquire what path will make the action a minimum, For, the
integrand being always positive, we see that the action is positive,
and so it must have a lower limit. Suppose, then, that this lower
limit is reached, 7.e. that there is a path for which the integral is a
minimum, and suppose the requisite derivatives exist and are contin-
uous for this path. Then Euler’s Equation will be satisfied, and,
in the case of n particles moving without constraint, we shall have:

z,i(\/z_( TFRVE) 2.2 (VIO+H VE) =0,
z; dr 0w}

)y
q

with corresponding equations in y, and z,.

Thus we have 3n differential equations for determining the 32
coordinates z,, y;, %, of the system as functions of the arbitrary
pargmeter r. The time has been completely eliminated from the
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problém of determining the path, and now'the time is subsequently
determined by (10).

The choice of the parameter r is arbitrary, subject merely to the
conditions of continuity (inciuding derivatives) stated above. We
may, then, in the final equation (11), choose r as==t, fe. set
¢(r)=7+. Then (11) reduces to

dx, U
12) m L5 CY
3 it’ 627‘,

and the 3n equations thus arising are precisely the 3n equations
which express Newton’s Second Law of Motion for the particles of
the given system.

The result may, however, be obtained without specializing the
choice of r. For, if dr, as given by (10), be substituted in (11), the
latter equations take on the form (12).

Thus we have proved the Principle of Least Action in the case of
n particles acted on by forces which admit a force function, on the
assumption that the action integral, ¥, has a minimum. As in the
case of Hamilton’s Principle, so here, the minimum principle de-
mands more than is needed. It is enough to require that the inte-
gral be stationary. In fact, there are very simple cases in which
the action is not 2 minimum ; but its variation vanishes. For ex-
ample, let a particle be projected vertically upward, and let z denote
its distance below the highest point of its path. Then

2 2

=mg f vay(EYar.

™ Its natural path is given by the equa

% 10 -
g [ tions :
B z=}g7, t=r, wnSrsSn

Consider now a varied path having the

Fio. 110 same end points (ry, 2,) and (71, 3,), and
' having
CRTII

The value of the action for this path is seen to be:
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o= §mvy(zt+ad - 2d),
and the time is:

ty — =\/%(\/z’.,+\/21— 2\/5).

The action and the time for the natural path are obtained from these
formulas by putting ¢ = 0. Thus the action is less for the varied
path, —and the time is also less.

In the foregoing example, Euler's Equation becomes an 1dent1ty,
except for z = 0, wher it ceases to have a meaning.

Elimination of t.e T¥me. The principle of least action eliminates
the time from the problem. The motion is determined in terms of
7, and then the time is computed by a quadrature:

dt\s a8 _ ([
T(d—r>—S, (bﬁ) =5 t—‘/\/U+hdr.

This last equation may be looked on as the definition of the time.

Ezample 1. To determine the path of a projectile, the resistance
of the air being neglected.
Let the axis of z be chosen vertical and positive downwards.

Then U=mga,

provided the level of the (y,z2)-plane is suitably determined
Furthermore,

T=1;‘_(5c2 + 2+ ).
Hence

= m\@fﬁVw'= + 9 +2%dr.

Euler's Equations take the form:

d\/zm _Vs d\/_y_o a Ve _g
™ V8 V& dr /8 dr /§

*From the last two of these equations follows:

ay' 4+ b7 =0,
ay+bz+c=0,
i.e. the path lies in a vertical plane. Let this be the (x, y)-plane.
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Thé first equation now becomes, if we set the parameter ¢ == &:

a_Vx _Vitg q=(@y.
avity 2vz '@ da
Hence

Qg—

v =—al+9

dz__ (_99

z 91 +9)
loga:=logl—+—-q+loga, 9=1.iq;

g . a g

dy Va

=4 ——
& T z—a

(y—b)i=4a(z—a),

the equation of a parabola whose directrix is the axis of y.
The time is given by the equation:

t= f\/tm(w'* Ty 427 - f\/l_._Ldz

(\/z,—a \/a:o—a}

\/Zg \/a:—a

In the foregomg solution it has been tacitly assumed that z
steadily increases from =z, to z,, since otherwise the choice of r(=1z)
would not be permissible. If z steadily decreases, it is legitimate
to set — 2z =7, the formulas now being correspondingly medified.
But if 2 decreases for a time and then increases, it is still possible
to transform to z as the variable of integration; ounly the interval
7y £ v S v, must be divided into two intervals, in one of which z is
decreasing (here, r = — z 4 const.) and in the other of which =z is
increasing ; but the derivative, dz/dr, will not be continuous in thig
case.

Finally, we have excluded the solution of Euler’s Equations :

¥ =0, 7 =0.
It is this solution that corresponds to a vertical path: ¥ = yy, 2 = 2
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Evample 2. Consider the path of a particle on a smooth surface,
z=f(u,v), y=¢(u,v), z2=y(«,v), when no forces act except the
reaction of the surface. Here the potential energy is constant, and
wemayset U=0. Letm=2, h=1 Then

_gde  opdudy  odv?
de det dt dt de’
and Hamilton’s Integral becomes :

t’
f(ElL2+2F’diJ + G?)adt,
4

Thus Hamilton’s Principle leads to the equations of the geodesics in
the form:

2 %(Ea + Fo) = E,i? + 2F,uv + G,
2% (Fu 4+ G%) = B2 +2Fuv + G107,

1f, on the other hand, we use the Principle of Least Action, we
have:

=2 f Vi,
where
S = Eu? 4+ 2Fu'v 4+ Gov™.

The condition that the action be stationary is here:

d B+ Fv__Eu?+ 2F v + G"v'z’

dr /S 2v8
d Fu' +Gv _ En?+2Fu'v +Gv?
dr /S 2v8

The two forms come together on the basis of the relation which
defines the time:

Here,

and so
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EXERCISES

1. Carry through the details in Example 1 of the text when 2
sometimes decreases and sometimes increases. Show that the path
is still given by the same equation, but the formula for the time ig
modified. Check all results by comparison with the elémentary
treatment of the problem, Introduction to the Calculus, p. 384.

3. Carry through the solution of Example 1, setting r =y,

8. A particle moves under the action of a central force attracting
acoording to the law of the inverse square of the distance. Prove

the theorem of equal areas:
dp

1?2 — = contt.
dt 0)



CHAPTER XVIII

THERMODYNAMICS. ENTROPY

The object of this chapter * is to give the layman those physical
pictures which enter in the conception of Entropy, and to show
how this conception attains its simplest and- most natural expres-
sion in the language of mathematics, —namely, as a line integral
which is independent of the path of integration.}

The specialist in physics does well to trace step by step the physi-
cal phenomena, tested by laboratory experiment in the broadest
sense of the term, which led up to the introduction of entropy as a
line integral; but it is a mistake to assume that this induective
method affords the sole access to the conception, and it may even
be questioned whether this approach is the best for the physicist.
Why throw a smoke screen over the mountain he is to ascend?
The climb is hard enough at best; why not let him have a good
view of the glorious summit before he starts ?

1. Reversible Changes and the (v, p)-Diagram. Imagine a hollow
brass cylinder, 1 cm. in eross-section, closed at one end and provided
with a piston. Let a quantity of

air § (1 gr.,say) be present in the "| (_\,_,p O
cylinder, and let the temperature, “————=> /
t, be the same throughout the v Fio. 111

system and hence, in particular,

> constant throughout the air. Let the pressure of the air per sq.cm.
be denoted by p,and its total volume by v. Then p will be the total
force exerted by the air on the piston, and tbe altitude of the part
of the cylinder occupied by the air will be v.

*In the final editing of this chapter I am indebted to Mr. B. 0. Koopman for
a number of helpful suggestions.

1 In this chapter we are taking the classical point of view, and not that of sta-
tistical thermodynamics — interesting and jmportant though that may be.

{ The whole discussion applies equally well to dry steam, the tempar!l.tm'e
heing, of course, high enough to prevent condensation. More geperally, it ap-

pliss to any perfect gas.
449
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et Ly it Iy zordd] 22 ar ooy 2o 8 oow poiinge.  TBan
temperature of the air will change, and will not even be the samo
throughout at & given instant. If, however, the piston is moved
slowly, and if the temperature of the walls of the chamber is nearly
the same at all points at any given instant, the temperature of the
air will also be nearly uniform at each instant, and we may contem-
plate the ideal case in which it is actually uniform at each inastant,
though different at different times.

Although this condition can never be accurately fulfilled in prac-
tice, nevertheless it is a sufficiently close approximation to the actual
state of affairs in the most important cases, and physicists do not
hesitate to begin the treatment of Thermodynamics by laying down
the above hypothesis. We shall refer to it as the Fundamental
Hypothesis and agsume that it is fulfilled in all that follows.

Just as, in a problem of analytic mechanics, we begin by isolating
the system, so here it is the air in the cylinder which is the material
system under consideration. The brass of the cylinder is merely
o means of keeping the air in place and transferring heat to or from
it. For we can heat or cool the air, for any given value of v, i.e.
for any given position of the piston, by allowing heat to flow in or
fiow out through the walls of the chamber.

We are now in a position to describe the physical picture which
illustrates the thermodynamical phenomena in question. Let the
piston be moved in or out, Mathematically this means that v varies,
decreasing or increasing. Let heat be transferred to the air through
the walls of the chamber, and let p denote the pressure correspond-

ing to any given value of v. The pair of
values (v, p) can be represented graphically
by a point,* whose coordinates are » and p;
and conversely, to an arbitrary pair of values
(w5} of v and p, i.e. to any arbitrary point (v, p),
»_ corresponds a definite state of the body of
ol Pro. 112 air, in which the volume has the prescribed
' value v and the pressure is brought, by suit-

ably applying heat, to the prescribed pressure, p.

Continuous Changes of State. We illustrate what is here meant
by two simple examples and prooeed then to the general case.

# The pair of values is read in physics in the order p, v,and physicists speak
of the (p, v)-diagram,” although they plot the point as indicated. It would

hava haan hattaw tn . ¢n thie

4
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(@) Toothermal Changes. Buppose the brass cylinder containing the
air to be immersed in a huge tank of water at constant tempera-
ture. Let the piston be slowly drawn out. Then the Fundamental
Hypothesis will be nearly realized, and we are led to the conception
of the ideal case, in which it is actually realized. The law connect-

ing the pressure with the volume as the body of air undergoes this
continuous change of state is:

p=0C or DY = pgty,
and is known as Boyle’s Law.*

Thus a curve (here, a hyperbola) is described in the (v, p)-plane.
The process is accompanied by a steady influx of heat into the air
from the walls of the cylinder. If, now, the piston is gradually
pushed back, the point (v,p) will describe the same curve in the
opposite sense, and a quantity of heat will be given out just equal to
the amount taken up in the direct process. The process is, there-
fore, described as reversible.

(b) Adiabatic Changes. Suppose the brass cylinder and piston
(now thought of as thin and thus having small volume compared
with the body of air) to be insulated in asbestos, so that practically
no heat enters or escapes in a considerable interval of time, as the
piston is gradually drawn out. Thus we are led to the conception
of a chamber whose walls are absolutely adiabatic, i.e. impervious to
any transfer of heat. The change of state that now arises under the
assumption of the Fundamental Hypothesis is known as an adiabatic
change, and the law connecting p and v is, for air, approximately {

pM=C or  pvM= putt

The process is reversible; cf. Fig. 113, p. 459.

An adiabatic change can be realized approzimately in a bicycle
pump when the piston is rapidly pushed down, the pump and air
being initially at a uniform temperature.

(€) The General Case. Consider now an arbitrary curve in the
(v, p)-plane. We may imagine that the piston is slowly moved and

% We may at this point recall the Law of Charles, which asserts that
2T
Po To'
where ¢ is conatant and 7' is the absolute temperature, § 2. . .
+The truth of this statement will be proved later on the basis of more funda-
menta! physical facts.
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at.the dame time heat is snitably poured into the body of air, or
extracted from it, so that the pressure, p, and the volume, v, are
always connected by the law indicated by the curve, the Fundamen-
tal Hypothesis being assumed to hold throughout. Thus at any
point of the curve the quantity of heat, measured in calories, and
taken algebraically (positive or negative), which hag been required
since the beginning of the process to maintain the pressure as pre-
seribed by the curve, has a definite value, Q. If the process be
reversed, the curve being now described in the opposite sense, the
amount of heat, @', required will be the negative of @:

@=-0

2. The First Law of Thermodynamics. Work. The work, W,
done by the body of air on the piston is given by the eguation (¢f.
Chap. XT, §§ 1, 2)

W= [pdy,

where C refers to the path in the (v, p)-plane.
Energy. Let the internal energy of the air be denoted by U. 1t
is proportional to the absolute temperature,

T=t+4 273,

where ¢ is the temperature measured in degrees centigrade; cf. § §,
(11).

Finally, let the total amount of heat * in the body of air, measured
in calories, be denoted by @. '

We are now in g position to state the First Law of Thermody-
namies, It is this. Let the body of air experience an arbitrary con-
tinuous change of state, represented by a curve C in the (v, p)-plane.
Then the heat that has flowed in, @ — Q,, is proportional to the
inecrement in the internal energy, U — U,, plus the work, W, done
by the gas on the piston, or
® Q- Q=4(U-T)+W),
where 4 is a constant which will be discussed presently.

*In all that follows we are dealing, not with the total amount of heat in the
body, but with an amount introduced into the body (or extracted from it) during
» given protess. It is convenient to think of this quantity as a difference, and a

simple way to do this is to start with the idea of the total amount of heat in the
body at any time.
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Joule's Equivalent. The numbgr of units of work required to raise
the temperature of the unit mass of water one degree is known as
Joule’s equivalent of heat and is represented by J. In the c.g.s.
system J has the value 427; i.e. the work done by gravity on one
gramme of matter, when the latter is lowered 427 metres, is just
sufficient to raise the temperature of one gramme of water one degree
centigrade.®

The constant, 4, is the reciprocal of J,

1

The Law admits extensions of the most varied character. Our ob-
ject here, in confining ourselves to this simple case of the air in the
cylinder and of reversible processes, is to give an absolutely concrete
picture of what goes on in a typical case, and to set forth the mathe-
matical methods which apply, not merely here, but in the more
complex cases.

8. Differentials. The First Law of Thermodynamics is often ex-

pressed by physicists in the form:

(2) dQ=A4dU 4+ dW) or = A(dU + pdv).

What do these differentials mean? Are they the differentials of
functions, and if so, what are the independent variables? Or are
they merely approximations for increments,—the true equation
being

(3 AQ= A(AU + AW)

and if so, how are these increments taken ?

The crux of the whole matter, in either case, is this questien of
what the independent variables are. The answer is that sometimes
these are two in number, and sometimes only one. 'Thus in the case of
the energy, U, this quantity is completely determined by v and p.
If the gas, starting from an initial state (v,, po), passes continuously
through any changes of state represented by a curve C in the (v, p)-
plane, which comes back to (v, p,) and thus closes, the energy at
the end of the trip will be exactly the same as the energy at the be-
ginning. Hence U is a function of the two independent variables,
v and p, and its differential, dU, has the value

* For example, if & rain drop were to fall in vacuo from a distance of 437
metrea (or nearly a quarter of a mile) into a pail of water, the heat generated
by the shock would be just sufficient to raise the temperature of the rain drop
one degres centigrade.
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® dv=%€-’d-+%’ dp,
where dv = Av and dp = Ap are the arbitrary independent increments
of these variables.

On the other hand, the work, W, can never be a function of v and
p, regarded as independent variables. It depends essentially on the
choice of the curve, . Whatdoes dW mean in this case? Clearly,
the curve, C, must come first. Then we have a one-dimensional
range of values, and the length of the are, s, of C affords a natural
choice of the independent variable, Or, if O is nowhere vertical, we
may take v as the independent variable. In either case we have

AW = pd‘v.

In the latter case, dv = Av; in the former, dv = DyAs.

"Precisely the same remarks apply to Q. Like W, Q depends on
the choice of C and, after this choice has been made, becomes then
a function of a single variable, as s or v.

We are now in a position to answer the question of the meaning
of the differentials in equation (2). First, an arbitrary point, (v, p),
is chosen ; secondly, an arbitrary curve, C, is passed through this
point; thirdly, the quantities, U, @, and W are considered along this
curve, under the assumption that the air experiences a continuous
change of state, as defined by the Fundamental Hypothesis and rep-
resented by C. Thus U becomes a function of the single variable s,
— the length of the arc of C,-—and the same is true of v and p.
Equation (2) is, however, still true, for it is a fundamental property
of the total differential of a function that equation (B) of Chap. V, § 5
is true, no matter what the independent variables may be. Thus equa-
tion (2) really means no more and no less than that

® D,@=A(D,U + D,W),

where the derivatives are taken along C. That, however, these de-
rivatives should be connected by any such relation, and that the same
equation (2) or (5) should hold for all curves U through a given
point, is in no wise evident, either mathematically or physically. It
£8 in this equation that the physical law finds its complete expression.

What of the other view, that (2) is a near-equation for (3)?
Here, the differentials seem self-explanatory: they are close approxi-
mations for the inecrements, and why worry ?

How superficial this view is, becomes evident when we ask what
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the increments are. How does the gas pass from the state repre-
sented by the point (v, p) to the state represented by the point
(v+ Av,p + Ap)? For there is an infinite number of possible paths
connecting these points, and some path must be followed, or we have
no definite physical picture before us. But as soon as we introduce
a path, —a curve C through (v, p),—we have all the preliminary
physical pictures of the earlier explanation. And this is, in faet,
the answer. Equation (3) requires precisely the same physical
setting described in the first explanation of equation (2). When
all this has been done, we can then divide (3) through by As, let As
approach 0, and thus deduce equation (5).  Not even yet have we
arrived at (2); for it is (5), a relation between derivatives, which
expresses the physical facts directly, and the transition to (2) is
pursly mathematical.

There is no short cut, no self-explanatory method, whereby (2)
is written down without the intervention of any curve C and the
derivatives and differentials pertaining to it, as Pallas Athene
sprang, panoplied, from the head of Zeus.

4. In Particular, the Differential dQ. From equations (2) and
(4) it follows that

(6) dQ = Xdv + Ydp,
=490 =40,
where X_A—3;+ Ap, Y=4 %
Here, X and Y are functions of the two independent variables,
v and p, but the expression
Xdv+4 Ydp

is not an eyact differential. Physically, this is clear from the fact
that, when the integral

fde+de

is extended over a closed path, it represents the heat that has been
transferred to the gas in the process, and this is not in general zero,
for the work is not in general zero. Mathematically,

9X_2Y_ 4

p v

and the right-hand side of this equation would have to be zero, if
(6) were an exact differential ; Chap. XI, § 7.

'
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May ifvpot be possible, however, to multiply equation () through
by such a fanction of v and p that the new right-hend side does be-
eome an exact differential ? The answer $o this question is affirma-~
tive, It comprises a physical law of the greatest importance and
it Jeads to the introduction of a new physieal quantity,— entropy.
Itis as follows®: The absoluie temperature, T, a function of the two
indgpendent variables v and p, yields through its reciprocal an integrat

tng factor; d.e,
Xdv 4 Ydp
T

is an exact differeniial.
Thus it appears that the integral

T H

taken along any path comnecting the fixed point (v, pp) with the
arbitrary point (v, p), is independent of the particular path chosen,
and consequently defines a function of the two independent varia-
bles, v and p. It is reasonable to expect that this function,

(v. p) (v 1)
8)- dQ_ [ Xdv+ Ydp
@) =7 T
(%9, Po) (%0, po)

should have a physical meaning, and this is, in faet, the case. The
quantity m (or x + a constant) is known as the entropy of the body.
By the first of the integrals (8) is meant nothing more or lesp than

1
Jl QT&ds, or J %d&,

this integral being extended along the curve C' of the (v, p)-plane;
Chap. X1, § 3.

® We are, of neceasity, omitting the physical considerations which lead in-
dnctively to this atatement, namely, the discussion of the efficiency of reversible
and non-reversible !¢ heat engines,” the definition of the thermodynamic scale of
température, etc. For, as was said at the beginning of the chapter, our object
is rather to show how the -final form of the law receives mathemsatical expression
by means of the idea of line integrals and exact differentials. The reader who
wishes to inform himselt concerning the physical phenomena which lead up to
the law may refor to any of the standard works, e.g. Buckingham, Theory of
Thermpdypamics ; Blondlot, Inlroduction & I'&wde de la thermodynamigue ;
Poincaré, Thermodynamique.

L]
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‘We have here a notable example of the interplay between mathe-
maties and physics. Expressions of the form (6), so-called “inexact
differentials,” were studied in an earlier chapter from a purely mathe-
matical standpoint, and it was shown analytically that an “ integrat-
ing factor ” always exists ; Chap. XIV, § 20. Here, the function (8)
taus obtained has a physical meaning of prime importance.

5. The Entropy of a Perfect Gas. In the case of a perfect gas,
a8 air or dry steam, we have, on combining the laws of Boyle and
Charles, .
®) pv = ap,T, &=y,
where T'=273 4t denotes the absolute temperature, ¢ being the
temperature centigrade, and v, and p, are values of v and p corre-
sponding to a temperature of 0° centigrade.

Thus any two of the three quantities p, v, T may be taken as the
independent variables, and the third is determined as a function of
these by (9). Beside the (v, p)-diagram we have now, by a purely
mathematical transformation, a (¢, v)-diagram and a (¢, p)-diagram.,

In tbe case of the (t, v)-diagram the First Law of Thermody-
namics, § 3, (2) here assumes the form

(10) dQ = ¢dT + ldv,
Uy
oT’

The coefficient ¢ is constant (or nearly 8o); it is the specific heat
Jor constant volume, or the number of calories required to raise one
gramme of the gas one degree.* Hence

c=4 l=AaU”'+Ap

[
(11) U=Z2T.

In the case of the (¢, p)-diagram, the First Law of Thermody-
namics assumes the form

»

(12) dQ = CdT + hdp,
v _ ?1)
C= A( 3T) h=dp?

From (9) it follows, since the independent va.mbles are here T
and p, that 8
a T = apovo.

# Moreover, I/ does not change with v when T is constant, and 80 38U, 7/ = 0,
Thus I = Ap. 1 is the latent heat of expansion.
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¥

Héance
@s) O o= adpyty .

Computation of dQ/T. For a perfect gas, equation (6) of §4
yields the following. Since

Y. | c
T=o=s™ V==
'wo have: - 40
c -
xﬂA(—a-J+P)=A(O__cP+P)=E_-_“cPa
oU _  Ac
Y Aap o e
Hence iQ 2
=04 R
(14) 7 C’v +op

The entropy is given by the integral :

(v, (0,9
—w= [ 89 dv_ . dp
B— o T 0v+cp,
)

(oy, p0) L))
or
(15) K o= log (vp) [0,
(16) # = log(v°p") 4 const.

The Curves T = const., u = const. From (9) it follows that the
ouarves T = const. are the hyperbolas:

an pv = const,

For air, the ratio C/c has the value 1.4. Henoe the adiabatics, or
curves of constant entropy, are the family
(18) . pv* = const,

Thus it appears that the latter curves are steeper than the former.

Two Deductions. (i) If we take as the curve in the (v, p)-plane an
adiabatic, i.e. a ourve corresponding to a change in which no heat is
'absorbed or given out, then 99 _ 0 a every point of the durve, and
henoce ds

%) #—h=fé—§?-0-
u
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Consequently, the curves of constant entropy are adiabatics.

(#) If we take as the curve in the (v, p)-plane an isothermal, i.e. a
ourve for which T = T = const., then

(=)
S [ e
0 posm [0
(8]

Physical Definition of Entropy. From
(19) and (20) it follows that it is possible
to define the entropy as a function of ©
(v, p) such that & is constant along an
adiabatic, and its change along an isothermal, T = T, ts equal to
9=,

¥4

¥Fra. 118



CHAPTER XIX

DEFINITE INTEGRALS AND THE GAMMA FUNCTION

1. The Definite Infegral ns & Fanction of a Parameter. Ieib-
niz’s Rule. Consider the definite integral

j J(z, @) da,

where j(z, @), for a fixed value of a, is a continuous function of 2
in the interval a <z £b. Sinoce the integral has a definife value
for each value of ¢, it is a function of a:

® () = f J(z, &) dz.

We will require, furthermore, that f(z, «) be a continuous function
of the two independent variables (, «) throughout the region
2 asz=sbh AsaegB
It follows that ¢(«) is a continuous function of . The proof is
immediate when we visualize the geometric picture. The surface

tj=sia) z=f(z a)
0 \ , 18 cut by the plane a=a’

st unaw \7 = in a curve,

‘¢

al
8 z=f(z, o), e=d,
and the area under this
Fa. 114 curve represents the value
of the definite integral formed for this value of a:

b(o) = f F(@, ') dz.

If o’ is changed by a small amount, the plane shifts slightly, and the
ares also changes but slightly. This is precisely the condition that

#{(«) be continuous,
460
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Differentiation of ¢(a). Apply the definition of g derivative.
Since Ax is @ constant with respect to the variable of integration, we
can divide by it under the sign of integration, and thus we have:

$(o0 + Ba) — $(ag) _ [ £(2, t0+ Aa)— f(z,
(3) Ax - Ao = %) dz.

As A« approaches 0, the mtegra.nd approaches the limit of/da =
f.(®, @), and thus it would appear that the limit of the left-hand
side, or D, ¢(«), has the value

dé _ 5 of
) de ) oa aa.

This is, in fact, the case when we impose the further condition
that the derivative 9f/d« exist, and that the function f,(z, a) be con-
tinuous in the two-dimensional region (2). But the proof is not se
simple as one might think, for what we want is the limit approached
by the integral of A,f/Ae, and there is no reason to suppose that
this is the same as the integral of the limit approached by A.f/Aa.
In other words, it is a question of reversing the order of the opera-
tions in a double limit — the process of differentiation and that of
integration.

It is not difficult, however, to avoid the fallacy just pointed out.
By the Law of the Mean,

®) (@, @+ Aa)— J(z, ag) = Aafo(2, & + OAc), 0<d<.
Hence the right-hand side of (3) becomes

(6) f Ja(®, @ + 0Ac) da.

® We can form readily a geometric picture of the value of this in-
tegral. @ is, of course, a function of all the variables in sight, namely,
%, &y, Ae. The equations

z = [z, o), a«=ay+ 0Ae

represent a space curve lying on the surface z = fu(z, ) and com-
prised between the planes & = & and « = @y + Ae. The projection
of this space curve on the plane a = a, is a cohtinuous curve,

z= fﬂ.(wl o + OA“)’



ginee the left-hand side of {(5) is continuous, and the area under this
ourve, or the integral (8), is thus seen to differ but slightly from the
value of the integral (4) when Az is numerically small. This com-
pletes the proof.* Equation (4) is known as Leibniz’s Bule.

Variable Limits of Integration. The limits of integration, a and b,
may depend on «, or more generally they may vary in any manner.
Let 8 ba a region of the (, «)-plane as indicated in the figure. Let

« have any value o’ in the interval (4, B),

B
o and let the segment
4 N_s | asz3b, e=da

i = liein §. Then the integral (1) is a fune-
% ¢ re 1 ¢ tion of the three independent variables

' («', @, b). Dropping the prime we write
. ¥

€8] ¢ (a a,d) =ff(a:, «) da.

The function f(z, «), together with its partial derivative f,(z, «), shall
be continupus throughout 8. It follows that ¢ (a, a, b) is a contin-
uous function of all three arguments, as is seen from the geometric
representation corresponding to Fig. 114.

The function ¢ (e, a, b) admits partial derivatives whose values are:

® F=[re0w  Ba—saa,  R-roo

In particular, ¢ and b may be made to depend on a:
® a=y(a), b= w(a),

where y and « are continuous together with their first derivatives,
and the curves (9) liein §. We then have a generalization of Leily
niz’s Theorem which is embodied in the formula :

a & freaae Lt 10,0510 0%

#The arithmetic form of the proof depends on the uniform continuity of the
Tunction fa(Z, &); of. Goursat-Hedrick, Mathematical Analysis, vol. I, § 97, or
the suthor's Funktionentheorls, vol. I, Chap, 111, § 8.
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EXERCISES

Verify Leibniz’s Rule by evaluating explicitly the integrals in
each of the following cases : ’

1 L] .
dz
1. o= dzp. 2. — . . Vat — b
Je z. f1+u’+z 3/ at — z¥dx.

2. Several Parameters and Multiple Integrals. The foregoing
theorems admit generalization to the case that the integrand de-
pends on several parameters,

ff(ﬂ’, @ B,y ) dz

and also to that of multiple integrals, e.g.

fJ f(""’ ¥, %2; & B, Y )axdydz

If the integrand is continuous in all the arguments, the function
defined or represented by the integral will be continuous in all the
parameters; and if, in addition, the partial derivative 9f/0e is con-
tinuous in all the arguments, the function will admit a partial deriv-
ative given by the earlier formula :

b 3
a1 %ff(w, o B, v, ...)dw:f%zdm+f(b, o B, y,...)aa_z

_f(a1 o B,y "‘)@

o’
(12) %ffffd!f=fff—;{d?.

In the cass of multiple integrals we assume that the region of
integration is fixed. Cases arise in hydromechanics, in which the
region varies with the parameters, but the treatment does not belong
to the elements of the Calculus.

Example. The potential, u, of a continuous volume distribution
of matter is defined by the formula, Chap. IV, § 5:

SIS



I3

464 CALCULUS

where the density, p, is a continuous function of the coordinates
(a, b, ¢) of a variable point @ in V7. The point P at which the po-
. tential is measured has the coordinates (2, y, 2); it is exterior to ¥
and
r=@—apP+ Y-+ (2—c)?

The force with which this distribution attracts a unit particle at
P has for its components along the coordinate axes the values

ou _ Ou ou
X=ax, —-a—y, Z-—s;'

These dervatives are given by the integrals

Q’—;=—fjfﬁ’—@—1‘:—ﬂdﬂ ote.

EXERCISE

The potential of a surface distribution is given by the surface

integral
=J S

where o denotes the density. Find the components of the attrac-
tion at a point not lying on the surface.

3. Improper Integrals. If we evaluate the following integrals
by the usual rule, we find:

) 1
dx 1
&) /\/5 2va| =2; fa==il

The first result looks reasonable, for the area under the curve
y=1/+/z in the interval (0,1) might well be 2 units; but the
second result is absurd, for the curve lies above the axis of =»
throughout the whole interval, and so the area under the curve can-
not be negative.

Clearly, then, such integrals — integrals whose integrands do not
remain finite — cannot be treated by the same tules as ordimary
definite integrals. They are examples of improper inlegrals (un-
eigentlicke Integrale), and under this class is to be included ome
further case, in which the integration is extended over an infinite
interval. We will, in fact, begin with this latter case.
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The Improper Integral f J(@)de. Let f(x) be continuous in the

interval ¢ S o <. Form the integral,
@ JEGLE

Let z increase without limit. If this integral approaches a limit,
we say that *

® j f (x) de

converges and assign to it as it8 value the limit approached :

f f(@)dz = lim f /(@) da.

If, however, the integral (2) approaches 10 limit, we say that the
integral (3) diverges. No value is assigned to a divergent integral.*

Ezxample. J e*dx=1.

[ =

For, J erfdz=1—¢* and lim { e*de=1.

Geometrically this means that the area under the curve
y=f@) =€
in the interval (c, )= (0, z) approaches a limit, namely 1, as «
becomes infinite.
Functions defined by Improper Integrals. Consider the integral

3

® Jet

* The student will perceive the close analogy between such improper inte-
grals and infinite series. The integral (2) corresponds precisely to s, (Inire-
duction to the Calculus, Chap. XIV, § 2), and the integral (8) to tne infinite
series, uy + ug + . )
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If a3 0, we have

» adz c 42
® fm“““‘;‘

Hence the integral (4) converges, and its value is x/2 when & >0,
and — x/2 when a < 0.

[ The integral (4) also converges when

« @«=0. Equation (5) no longer hes a

0 meaning ; but the integral on the left

of equation (5) has,* and its value is 0

Fia. 116 for all values of z. Hence its limit is 0.

To sum up: The integral (4) con-

verges for all values of a, and it defines a discontinuous function
$():

roln

(L)

™

3’ 0<a;
® $(0) = f e =l 0, «s0;
o

—-=, a<0.

It should be pointed out that no question of indeterminateness
can arige concerning equation (5), since « is chosen first (z % 0) and
then held fast; i.e. « is a constant, and = is the variable.

4. Tests for Convergence. Trst BY Dirpct CompParmsoxN. Ix-
TEGRAND POSITIVE. Let ¢ () be continuous and positive (‘or zero) in
the interval g S x < o, where g i3 any convenient fived number in the
interval cSae<ow; fe, g=c Let

1 j ¢ (2) dz

converge. If f(x) is positive (or zero) and not greater than ¢ (z) at
any point of the interval g Sz < »:

* The ordinary definition of a definite integral as given in the Iniroduction,
Chap. XII, or in the present volums, Chap. XII, admits immediate extension to
the case that the integrand is undefined in a finite number of points of the
interval, provided it is continuous in all otber points, and remains finite in the
whole interval, {i.e.

[7@]<6 aSz&b, O, s positive constant.
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0 < /(=) = ()
then the intagral (3) of § 3 converges.

For, ff(w)mgf¢(w)dm§f¢(z)dz=4

Thus the integral (2), § 3, being equal to

jf(z)dﬂ’+ff(¢)dx, 9<%,

is seen to increase (or remain constant) as z increases, but never to
exceed the constant value 4 4+ B, where B denotes the value of the
first of these last two integrals. Hence, by the Fundamental Prin-
ciple, Introduction to the Calculus, p. 391, this variable approaches a
limit, and the theorem is proved.

The test is analogous to the Direct Comparison Test for Conver-
gence in the case of infinite series whose terms are positive.
Furthermore, as there, so here, a like test for divergence exists :

Test For DIVERGENCE. Let ¢(x) be continuous in the tnierval
gS z< ™, where g = ¢, and let

@) f $ (@) de

div A !
e T e ze@z0  gso<e,

then the integral (3), § 3, diverges.
The proof is left to the student.

EXERCISES
1. Show by direct evaluation that
. e, 0<G 0<g 1<p

converges. !
8. Show in like manner that
L 0<C, 0<yg
diverges.
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Teat for convergence or divergence each of the following infegrals,
using the theorems of the text and taking, as the comparison inte-
gral, (1) or (2), the integral of Question 1 or 2.

8. -——d—m—-—" 4. zde . 8 _dz_..
VG Vot —1 al+ o

8. _z.i'z___- 9. dz . ‘8 ﬁdm .

viva VE—1 27 —1

5. Absolutely Convergent Integrals. If f(z) is continuous in the
interval ¢ < # < o, and if the integral

® j ()] do

converges, then

@ j S(%) dx

converges. For, since

@) =|@)| - {I5@)] - f@)1,
it follows that

f f(n) do = f /(e o — f (/@) f@)} de.

The first term on the right approaches a limit, by hypothesis.

Now,
0 = /(@] —r@@) = 2|7
Hence the second term also approaches a limit when z becomes
infinite, and the theorem is proved.
When the integral (1) converges, the integral (2) is said to con-
verge absolutely.

sin x dz
— Jnsz
: sin z 1
Since 1|21t

and since the integx:a.l of this last function converges (either by the
test of §4 or by direct evaluation), the given integral is seen fa
converge.
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6. The Limit Tests. We will still assume f(2) to be continuous
in the interval ¢Sz <.

Test vor CONVERGENCE. If there exists a constant k greater than
1, such that @*f(x) approaches a limit :

lim o*f(x) exists, 1<k,

then the integral ] S(@)dx converges.

Let the above limit be denoted by L. Then it is clear that
#*| f(z)] approaches a limit, namely | L|:

lim o*/(2)| = [ L}

Let C be a positive constant greater than [L|. It follows that, fox
all values of » sufficiently large, this latter variable will be less than
G, or @ f@)| < G gz <w,
where g i8 a positive constant not less than ¢. Hence

i<, gso<m.

On setting ¢ (z) = C/2* and applying to the integral

j)f(m)ldz

the test of § 4, this integral is seen to converge Hence the given
integral converges absolutely.

A corresponding test for divergence exists, but it must be stated
and applied with care. ‘

Test ror Drvereexce. If
()] lim zf(z) ewxists, — (denote it by L);

(%) and {f this limit is not zero, L=+0;
then the integral f f(z)dx diverges.

Also, if z f (&) becomes infinite, t.e. if

limzf(x)=+® or =—0,

she above integral diverges.
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Bappose that L > 0. Let a positive constant C be chosén less

than Z: 0<C<L

Then the variable zf(x) will become and remain greater than O:
zf(=)>C, gSa<m, (g>0).

Hence J(@) >g,

-and the integral is seen to diverge by the test of § 4.
If L<0, let f(z)=—F(x). The proof of divergence can
now be given in a similar manner.
When zf(x) becomes positively infinite, any positive constant
C can be chosen and the proof given as above. Finally, the case
that =2f(x) becomes negatively infinite can be referred to the case
just considered by setting f(z) = — F ().
Remark. If L =0, we cannot infer either convergence or
" divergence, as the following examples show. In each case, L =0.

(a) dz_, Here _9%_ _ loglogz — loglog 2,
zlogz zlog »
and thus this integral diverges.

f dz g 1|
®) z(log )’ Here J z(logz)? logz|s’

and this integral converges.
The tests of this paragraph are analogous to the Test-Ratio Test
for the convergence of series, Introduction to the Calculus, p. 394
Finally, the case of the improper integral

_f /() da,

where f(x) is continuous in the interval — o < 2 < ¢, can be treated
in a similar manner, or referred back to the above integral by means
of the change of variable, z=—1.

A
Ezample 1. Je"’dz. Here, any value of & >1_leads to the

proof of convergence. Set, for simplicity, k= 2:
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By the method of Chap. X, §3, it is shown that this funotion
approaches a limit, and hence the integral converges.

Example 2. w—:@-;-’- Here, any value of k& between 1 and
A/ +

4 can be used, for
CO8 & cos z

Vizae @ iyifs
Thus the integral converges.

EXERCISES

converges.

. dz
1. Show that the integral
f Vit

zdx

————— diverges.
Vita it

2. Show that the integral

Test the following integrals for convergence or divergence, using
each time the simplest method.

dz zdT xdz
3. ——— 4. —— 5. .
vitys vit+a Vit
o
8. je“’ cosazdz. 7. Jz""e“ dz. 8. .fr' log (14-2)da

9. f G (z)e* dz, G(z), any polynomial.

10. The same integral, when G(7) is replaced by any fraction,
R(z).

11, f z*-l¢~*log xdz. 12, f z*le~*(log z)"dz, 0 < n.

Prove the following theorems. The integrand f(x) is assumed
continuous in the interval ¢ S z < .



na'lfnmmhntk greater than unity exists such that"
#*f(@) remains finite * &> 1)
then the integral (2) converges.
i4. If #f(2) remains numerically greater than some positive con-
stant X for all values of z from a definite point on:
h<|af(®)), gSz<w, where O0<h, ¢Sy
the integral (2) diverges.

7. Alternating Integrals. Consider the integral

jsi.n L
@

When z approaches 0, the integrand approaches 1, and the fact that
the integrand is not defined for z =0 is unimportant (foot-note,
p- 466).

All of the foregoing tests fail to establish either the convergence
or the divergence of this integral. There is, however, a simple and
direct treatment, analogous to that used in the case of alternating
series, Introduction, p. 398. Write

./'smmdm f_,_f_,_ +f+‘f)m_nfdz mr S z< (m41)m

(m=)7 wmw

, ¥

The terms in the parenthesis are alternately positive and negative,
as is seen by plotting the graph of the integrand,
y=202,

-7

Bince the arches steadily flatten down, the numerical value of the
area bounded by an arch and the axis of # steadily diminishes and
approaches 0, and thus we see that the integral converges. The
details are a8 follows. Compare

(w4

fema:dm with J‘smzdz_

(D)
# {.0. numerically less than some positive constant, @ :
7)< a,
cse<w,
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. .

In the first integral, set
g=(m—1)x+14, and let Z=amw i
in the second integral. Thus we find

sin ¢de Fsin tde

d —_—.

J(m-l)r-}-t an :F,fmwﬂ
Clearly, the numerical value of the second integral is less than thas
of the first. Moreover, the numerical value of either approaches 0
as its limit when m = 0. Finally, if mxr < 2 < (m + 1) x, the last
integral approaches 0. Thus the given integral can be written as

an alternating series, which satisfies all the conditions for conver-
gence,

The Fresnel Integrals. In his investigations on light, Fresnel was
led to the following integrals :

sin _x dz, COB T dx.
vV Vz

The second of these involves the treatment of § 8 because the inte-
grand becomes infinite at the lower limit of integration. The first
can be shown to be convergent by the same reasoning as that set
forth above.

Let us make the transformation

t =z, z =
Then % . A
sinedz _ o (sinpar,
Va

Since the variable on the left approaches a limit when z == ¢, the
variable on the right must approach a limit when ¢ = o, and thus
we see that o

/lsint'dt

converges. And yet the integrand oscillates forever between +1
and — 1, The explanation of the paradox lies in the fact that the
8raph of the funetion

y-!int‘.
though oscillaung conunually from v =+1 to v = —1, still is
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made up of arches whose bases are growing shorter and shorter
For, the curve crosses the axis when
= nr
Thus the length of the base of an arch is ¢,,, — ¢,, where
ta=(n+1x, 2 = nr.
*_ YT,
tn+1 + t- 2\/1&

Hence ,—th=x or ¢, ,—1I,=

EXEROCISES
1. Show that the integral

XCO08 D
jmd‘” a0,

2. Prove the theorem: If ¢(z) is a positive monotonic decreasing
function, continuous in the interval ¢ £ # <o, andif lim ¢ (z) =0,
then the integrals, -

oonverges.

f¢(x)sinzdm, j¢(z)cos(aw+b)dz, a%0,

converge.
3. Prove that the integral

f cos a?dx
eonverges. )

8. Infinite Integrands. The first example in § 3, (1) illustrates
the cdse

1]
® Sraaa,
in which f(r) is continuons at all points of the open interval
@ a<zsh,

but does not remain finite in the interval. The treatment of this
case is parallel to that of the case just discussed at length, and the
proofs are left to the student. First, the
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Definition of Convergence. 1f

® j f(z)d=

spproaches a limit when ¢ approaches 0, the improper integral 1)
i8 said to be convergent, and its value is defined as this limit:

@ f /@) dz = linm J (@) da.

If the variable (3) approaches no limit, the integral (1) is said to be
divergent, and no value is assigned to it.
It is readily shown by direct computation that

® } Odz

G—a’ 0<ikl,

converges (I, a constant). Also that the integral

(©) de’, C+0,

-a

diverges,

On the integrals (5) and (6) are based the Comparison Tests and
the Limit Tests for convergence and for divergence. It is assumed
throughout that f(z) is continuous at every point of the interval (2),

ComrarisoN TEsT ror CoNVERGENCE. Let ¢(z) be continuous
and positive (or zero) in the interval {2), or in the left-hand part of
that interval :

05 é(2), a<zEcSd;
and let fcﬁ(x)dz
comverge. ¥ 0 < /(@)% ¢() a<zgoe

then the integral (1) converges.
CoMrarisoN Test For DivERGENCE. Let ¢ () be continuous dnd
Dositive (‘or sero) as above :

05 ¢(»). a<zgcs Y,



’

3
and let f & (%) da
diverge. If i
: J(2) 2 (=), alese
then the integral (1) diverges.

Absolute Convergence. 1f

Jiroias

Bonverges, the integral (1) converges, and is said in this case to be
absolutely convergent.
Lrvir Tesr vor CoNVERGENCE. If there exists a positive constant
1 less than 1 such that (x— a)'f(z) approaches a limit when = ap-
proaches a:
l'iin(z—a)'f(z) exists, 0<li«l,

then the integral (1) converges absolutely.

The proof is given by the aid of the Comparison Test and the
convergent integral (5).
Lor -Trst ror DivercEnce. If

0] lim (z — a)f(z) exists — (denote it by L),
[ ]
() and if the value of the limit is not zero, L 0;
then the integral (1) diverges.

Ao, if  lim@-a)f@=te o =—x,

the integral (1) diverges.
There is no important class of alternating integrals, like those of
§ 7, to be considered here.

1
Ezample 1. .f 2*te* dz.
When « = 1, the integral is a proper integral. Wheén a=20, we
bave, . .. .

1
e
¢ dz,
x



IMPROPER DEFINITE INTEGRALS 477

and the form of the integrand suggests divergeénce. In fact,
zf(x) =e-,
and this funetion (i) approaches a limit (namely, 1) when z ap-

proaches 0; and (i¢) the value of the limit is not 0. Hence the
integral diverges. For any smaller value of a, the integrand is still
larger, and hence we have divergence,

When 0< a <1, it is easy to see how to choose I, namely:
l=1~¢ Then

2 f(z) = e*, 0<ikl,
and since this function approaches a limit, the integral converges.
' 1
Evample 2. f (log %)ydz, 0<y.

[}

Here, any value of I between 0 and 1 can be used to prove con-
vergence :

() = & (— log z)” .—_[_—_l"ﬂ]’.

vy

It is readily shown by the usual method (Chap. X, §2) that the
function within the brackets approaches 0 when x approaches 0, and
hence the whole expression approaches a limit (namely, 0).

9. Continuation. Consider the integral
dz
AV/ Iy
Here, the integrand becomes infinite at the right-hand end of the

interval.
The above is an example of the integral

@ j f(z) da,

whers f(z) is continuous at every point of the open interval
2 asz<b
This integral is defined to be convergent if

® o Jraae -
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a.ppro'mhu a limit when 4 approaches 0, and its value is defined as
this limit v b=

CH Jraae=tim [r(e)aa

If the integral (3) a.p;roach:eu no limi::, the integral (1) is said to be

* divergent, and no value is assigned to it
1t is readily shown by direct computation that

® J"(b_w),, 0<i<1,
converges (I, a constant). Also, that the integral
|
(6) ‘ f bcf";, C=0,
. diverges. :

On these integrals are based the Comparison Tests and the Limit
Tests for convergence and for divergence.

The Comparison Tests for Convergence and Divergence are similar
to those of § 8, the interval a <z < ¢ now being replaced by the
interval

csze<h where asSc<h
The student should write these tests out in detail, and prove them.

Absalute Convergence is treated as in the earlier cases. Finally,
the Limit Tests for Convergence and Divergence are similar to those
of § 8, the variables on whose limits the tests turn now being

_ (¢ —2)s(=), 0<i<l
and & —2) f(=).
The student should also write put these tests in detail, and prove

Ezample. J = Since 1o contains the simple linear
factor 1 — 2, it is clear tha,tl=}willbeanlue of I, for which the
Limit Test for Convergence will apply :

-aif@=Yi=2a—_1
Vi—-# V{I+aod +z’)
Henoe lim (1 — @)t f(2) exists, and the integral converges.
L)
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10. Discontinuities within the Interval. The second example of
§ 8, (1) illustrates toe case

1) j S (z) dz,

in which f(x) is continuous at all but a finite number of points
&, &2,y & of the interval a < 2 < b, or the interval ¢ <z < w.

Let ¢, ¢, - be points chosen, one in each of the sub-intervals
into which the interval (a, b) is divided by the points &, &, «--.
Consider the integral of f() in each of the latter sub-intervals. In
some, it may be a proper integral. 1If it converges in every one of
"these sub-intervals in which it is improper, then the integral (1) is
said to be convergent, and its value is defined as the sum of the inte-
grals, proper or improper, in these intervals. In all other cases,
the integral (1) is divergent, and no value is assigned to it.

Thus the second integral of § 3, (1) diverges.

Example. The Bera Fuxcrion, B(m, n), is defined by the
integral 1

B(m, n) =Jw""“ 1 — )" tdx,

when this integral converges. For what values of m and n will con-
vergence take place? )
Tet ¢ be a constant between 0 and 1. Then each of the integrals

[ 1

. J " 1(1 — )" dz, f z»t(1 — o)~ 'de

must either be a proper integral or a convergent improper integral.

It is easy to apply the foregoing tests to each of these integrals
and thus to show that the Beta Integral converges for all points
(m, m) lying within the first quadrant, and for no others.

EXERCISES

1. Carry through the details of the proof of convergence of the
Beta Integral
2. By making the change of variable, ¢ =1 — 2, show that

B(m, n) = B(n, m).
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' 8, For what values of p and g will the integrad

J sin? -z cosa da

ol ¥

eonverge 7
Are the following integrals convergent?
1 ~n -
dx ~2* don
& J— 6. | elogadd 8. fe .
J Vzlogz f Chl . log a2
1 1 dm 1 d 1 1
7. [logzdx 8. f__i_ . j‘—;
[jll—m y, ~/—Tog 2 lcs da.
11. The Gamma Function. Consider the integral

3

1) J z* e de.

This integral will converge if each of the integrals
1

(2) Jlx“"e—’ dz, J.z:“‘e—'d&:

which is improper, converges.

The second of these integrals converges for all values of a; §6
Ex. 7. The first is a proper integral if ¢ 2 1. When « <0, i
diverges ; but it converges if 0 < 2 < 1.

Henoe the integral (1) converges for all positive values of «, and
for no others. Its value is the Gamua Fuwxcrion,

3 T(a) = '/‘m“"e-’daz, 0<a<w

The Difference Equation. The Gamma Function satisfies the dif
ference equation :
()] T'(x + 1) = al'().

For, if we form the integral

fm‘e*dz
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snd then integrate by parts, we find ;

Now allow z to increase without limit. Theleft-hand side approaches
T'(e + 1); the first term on the right approaches 0, and the second
term approaches T (), q.e. d.

The Factorial Function. The value of I'(1) has already been com-
puted, § 3, Example:

r(l)=1.

From the difference equntion (4) we infer, on setting a =1, 2, 3,

+ssy 0 + 1, successively, that

I‘(2)=1-1, 1‘(3)=2I‘(2)=2-1=2!, I'(4)=3-2-1=3!, ser
) T(rn+1)=anl.

For this reason the Gamma Function is sometimes called the Faocto-
rial Function. It interpolates between the values of n!,

The Graph. We have:
(6) T =+ .

1 @ 1

For, T{e) =Jm""e—’ dz +Jw¢-!e—zdz >J‘m““e"dz.

Bince €™ > e-! in the interval in question,
1
T(a) > fm““e‘ldm = -1-,
ex
and thus the truth of (6) is established.

That the function I'(«), as defined by the integral (3), is continu-
ous, is true; but the proof belongs to a later stage in analysis.
Likewise, the fact that the derivative of the function is given by
Leibniz’s Rule:

()] I(a) = J z*~le~*log z dz,

and that the second derivative is found by applying Leibniz’s Rule
fgain : w

(8) I(a) = J 2*-1¢ (log z)* dz.
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These integrals can, however, bs shown to converge, by our pres-
ent methods. We observe, in particular, that the integrand in (8)
is always positive, and hence

() >0, t<a<m.
Thus the graph of the Gamma Function,
(9) y=T(a), O<a<e,

is always concave upward. Since it has the positive axis of y as an
asymptote and goes through the points (&, y) = (n + 1, n!), it is easy
to plot the curve in character.

The Function Y'(a) for & <0. When a <0, the integral (1) di-
verges and so fails to define a function. We can, however, extend
the definition by means of the difference equation, (4). Let « lie in
“the interval
—-1<ea<O
-Then I'(a + 1) is defined for these values of . And now we agree
to define I' (@) there by means of (4):

(10) I'(a) = 35:_12

Thus I'(«) is negative in this interval. The graph (9) is continu-
ous, and it evidently has the lines @ == 0 and a == — 1 as asymptotes,
Moreover, it can be shown to be concave downward throughout the
interval.

The process can be repeated. Let « lie in the interval

—2<a<g—~1,

and define I'(«¢) by means of (10). The function is positive in this
interval. The graph of (9) is continuous, and it has the lines
a=~1 and a& =— 2 as asymptotes ; it is concave upward. And so
on indefinitely.

The student can now readily plot the curve in character. An
accurately drawn graph is shown by Duval in the 4nnals of Mathe-
matics, ser. 2, vol. 5 (1904), p. 65.

u... Tables of the Gamma Function. The function I'(«) has been tabu-
lated.* Because of the difference equation (4) it is sufficient to con-
struct suckh a table for values of the argument from 1 to 2.

® Legendre, Traité des fonctions elliptigues, Paris, 1826, vol. II, p. 489,
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Ewample. To determine I'(2.515) from Peiroe’s Tables, p. 140
Let a = 1.515. Then |,

T'(2.515) = 1.516 x T'(L.515) =1

Evaluation of T(}). If =} in the integral (1), and if we make
the change of variable, ¢t =+/x, we find:

Q) ==2fe-“dt.

This latter integral has the value }V7; ¢f. §18. Hence
() r@) = Vs

EXERCISES
1. By means of the transformation t=e-*, show that

I'(a)= f <log %)‘_l dt.

2. Prove:j etdr = =L+ 0<a, —-1l<n.

artl ?

Suggestion. Let y = az.

1
3. Prove: /z“(]ogi)ndm=(§nyi"l'—;%, -1<gn, —1l<m
Suggestion. Let ¢ =2™* in Question 1.
4. Test the integral of Question 1 directly for convergence and
divergence.
5. Compute I'(a) and I'/(a) by Leibniz’s Rule from the integral of
Question 1, and show that the resulting integrals converge.

1
8. Compute: J{/xlog (1/x)dx

7. Prove that
1.8.5.. @n—1)=2L0+D
V=
8. Prove that
1.3.5.- (2n—J Tint+4)
2:4.6. 2n Vrl(n +1)
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. 13. The Beta Funotien. We have defined the Beta Funetion by
the integral (§ 10)

1

1) B(m,n)zfz"‘l(l—z)’"ldw, 0<n 0<m,
and shown that '
2) B(m, n) = B(n, m).

If we make the change of variable in (1):

V=12 T=IF y’
we find :
= =1d .

® Blm, f A

It is possible to evaluate the Beta Function by means of the
Gamma Function. The formal work is as follows. From § 11, Ex,
2, we have, on setting n+1=m:

!

I'(m)= fa~z™te->*da.

Hence T'(m)arte = f am-lpn—lg-s{l+s) dop.

Now, integrate each side of this equation with respect to ¢ from 0
to o. If the iterated integral on the right were a proper integral,
we could reverse the order of the integrations and thus obtain:

@ - TMm f a-leeda= f 2~tda f an-1g-00+2) dg,

The value of the integral on the left is I'(n); that of the first
integral to be computed on the right is, by § 11, Ex, 2:

T'(m 4+ "2.
(1 + 2y~

Hence the right-hand side of (4) reduces, by the aid of (3), to

T'(m + n) af__;‘%‘f_;: I'(m +n)B(m,»).
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Thue we find :

T'{m)(n
) B(m,n) =14(ﬁl;%.

The above reversal of the order of integrations is a queation of
double limits and requires proof. The proof, however, belongs to a
later stage in analysis.

EXERCISES
Prove the following equations to be correet.

omde _ VaT(n+ 1),
" Jvi=s 2T(n+1)

(=5
9. fsin'a:cos"zdm: 2 2_J.

2r(1”——-“2“"+ 1)

A dz _‘/;I‘(%)

1

3. — =
n 2
1 r(p+1)r(*—"_+_1)
4. Jz"(l—w’)’dx: n e
nr(p+1+"—'—;‘+—-

13. Improper Double Integrals. Let f(z¥) be continuous at
every point of the region

8: 0gz< ™, 0sy<ow.
The improper double integral
@ S freaas
8

is said to converge if the corresponding integral, extended over &
varigble finite region 3 lying in the first quadrant, approaches a
limit, no matter how X expands, provided merely that an arbitrary
finite region r lying in § altimately is included in all the regions 3
from a definite region 3 on. In case the integral (1) converges, the
limits corresponding to the various possible choices of the variable re-
gions X are all equal, and this is the value assigned to the integral (1),
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. '.l‘h;.u when (1) converges, it necessarily converges absolutely, ¢e.

f f {f(2,y)]a8
conterges, :

If, it particular, f(z, y) does not change sign in §, it is obviously
necessary and sufficient for the convergence of the integral (1) that
it converge for one special set of regions X chosen as above.

The extension of the definition of convergence to other open
regions 8, whether finite or infinite, in which f(z, y) is continuous, is
obviocus.

Consider in particular

@) f g,

t

extended over the first quadrant. Let the region X be chosen as
the quadrant of a circle, 0 r< B. Then

I oz
ffe"""dS =Jd0.t/‘re""dr=i(1—6“")-
T

Hence the integral (2) converges and has the value »/4.
Next, choose as the region 3 the square

0254, 0sys A
‘We have:

. A 4 A .
h ffe"""dﬂ:fe"’dyfe“’dz,—.:(fe"’dw) .
by .

Now let 4 become infinite. Thus we infer that

. -
® (fe"‘dz) =E, or fe"’dm =—\§-r,
and thig:latter important integral is evaluated.

14. Evalyation of Definite Integrals by Differentiation. It is
sometimes possible to determine the function defined by a definite
integral by differentiation. Only the formal work can be given here,
gince the justification of Leibniz’s Rule in the case of improper in-
tegrals requires a more extended study of analysis,
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Ezample 1. Consider the integral

1) U= fr" cos azx dz.
It converges absolutely for all values of «, since the infegral

@) f e?dp =" V"'

converges ; § 13. Differentiate (1):

3) Z:: j ze~* sin ax dz.

This integral is also seen to converge. Transform it by integration
by parts, taking xe-*dx as one of the factors. Thus we find :

3
jxe*”sinumdz:%J e cos ax dz.

Hence (3) becomes :

au_ _ou
da 2
Integrating, we have:
log u=— }e*+ C, or U= ke'*“'.

To determine the constant of integration, set « = 0. From. 2)
we have u==Vx/2=Fk and the final evaluation of the given

integral is
4) . fe-" cos ax dr = l/—_e X

Ezample 2. Let

(5) w= f e iz,

Here, % =—2q f 229" dp,
o

And now it isa skillfully chosen substitution that leads to the result
Let y=a/o (0<a). Thus
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ofg 7
- o

oY 24, u=Ce™*, Cm=
de

© ‘/L'—w-'dm =fVrets, 05

or

() f e#~¥# dp = }~/xe 4%,  (no restrictions on a).

15. Other Methods. Sometimes the form of the integrand sug
gests a apecial method.

1
Ezample 1. J' l_cllgﬁ_:_z. Develop the factor 1/(1— ) into a

series : 1
1——_1+z+:v2+
Hence (Tables, No. 427),
1 1
logwde & " 1 1
J‘_lg___z_=2=n n,loga:d:c=—( + +32+ )

It bappens that the value of this series is well known (¢f. Pier-
pont, Funrctions of a Complex Variable, p. 289):

w_1 1
L8] 3 +2’+dz+

Thus the value of the integral is obtained. The proof, however, is
ineomplete, since ii remains to show that the series can be integrated
term-by-term. This proof belongs to a later stage in analysis.

Ezample 2. 8Nz o, If we make the change of variable

2 =ay (and then replace y by z), we find that

@) u=fs—ir-;iwdz

bas the same value for all positive values of «. Now, write.
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‘ . ..
@) , uszIP;ﬂdm+Jsmmamdz'~

Applying the method of integration by parts to the second integral,
we find :

4) fsmaa:dz=cosfra__} cos ax o
x T o x?

Let & become infinite. The limit of the first term on the right
is 0. The integral in the second term is numerically less than

Hence the second term also approaches 0. Thus the integral on the
left of (4) approaches 0.

The limit lim J smmu:c dxr is one we have not met, nor is it
o
readily determined. But it is well known in the theory of Fourier’s
Series and is shown to have the value x/2.
Thus wé have, finally :

g when a > 0,

‘/‘sinaa:dm___ 0 “ g=0,
x

—72—': “« a<0.

Contour Integration in the Complex Domain. By means of
Cauchy’s Integral Theorem, Chap. XX, §14:

J f(z) de =0,

many definite integrals in the domain of real quantities can be
evaluated. The method is set forth in treatises on the Theory of
Functions of a Complex Variable; cf Goursat’s Mathematical Analy-
sis (translation by Hedrick and Dunkel), vol. II, p. 98, and the
anthor's Funktionentheorie, vol. 1, Chap. 7, § 3.
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Further References. Byerly’s Integral Calculus, 24 ed., Chap. VIII,
containe much that is suggestive, particularly §§91-94; but § 95
is not helpful. Schldmilch, Compendium der hiheren Analysis, vol.
11,34 ed., contains a chapter on the Gamma Function which is fairly
accessible for the beginner.

EXERCISES
l_lﬂﬂ%=_ﬁ. 2,lﬁﬁﬁ=_ﬁ.
1+ 12 1-29 8
1
1, 142 - e+1 n
. =1 = - 1 = e
3 Ja: ogl_zdz 1 fog dm 1

5, J g-_‘*szm___a!_wdm = ta.n‘ll'-; . Suggestion : Differentiate.

6. J‘c________osmd:: = %e-l". Suggestion : 1_*1_@2 = 2fae"’°+"'da.



CHAPTER XX

COMPLEX NUMBERS AND THE THEORY OF FUNCTIONS

1. The Age oF Pable. Imaginary numbers came into the science
through the attempt to obtain a solution of the guadratic equation
in all cases. The particular quadratic,

24+1=0, .

obviously cannot be satisfied by any integer, fraction, or incom-

mensurable number, whether positive or negative, and these were the

only numbers known to the science when the calculus was invented.
If a pure quadratic be written in the form

=a,
where a denotes a positive number or zero, then a root of this equa-
tion is 2= va

If a=-—1, we can still make the mark, v —1; but it has no
meaning. For only those things have meaning in mathematics
which bhave been defined.

This statement must not, however, be understood as barring the
road to further definitions, and it was, in fact, this thought, —the
possibility of finding a meaning, as it appeared to the mathematicians
of the eighteenth century; of extending the number system by intro-
ducing a new definition, as we should say, — that, first vaguely, then
ever more clearly, guided our predecessors in their quest for what
they imagined to exist, but which they had not yet succeeded in
grasping.*

The Formal Period. Let us follow the historical development of
the idea. At first, v/~ 1 was a mark,} which was written in algebraic

# Recall, for example, the words of Lsibniz, quoted on p. 830,
t A “symbol," some would call it. But what is a symbol ? Does & symhol
491
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expressions where a letter, as a or z, might appear, and expressions
eontaining it were transformed according to the five Formal Laws of
Algebra:
A4+B=B+ A4,
A+(B+O)=(4+B)+G,
AB = B4,
A(BC)=(4B)C,
A(B+ C)= AB + AC.
Thus, in particular,
a+bV—-1+(@+¥¥V=-1) @
was replaced at pleasure by
(a+a)+B+0)V—-1

‘We have here the idea which underlies the later definition of ad-
dition for any two complex numbers, ¢ + bV — 1 and a’ 4+ b’V — 1.

Furthermare
av-—-1 and V—1la

were considered as interchangeable. And two of these queer expres-
sions, a + bV —1 and o' 4+ b’/ —1, were considered as equal (i.e.
one could replace the other on any occasion) if and only if a =a’
and b==d"

a4+bdbvV—-1l=a+¥V¥v-1 if a=a’ and b=V¥.

In the case, however, of multiplication (i.e. in case two of these
marks followed each other like two letters which are multiplied to-
gether, as ab, — for, of course, nothing is defined as yet, and so it is
a question merely of an expression which looks as if it would like to
be a product if it had a chance) a rule was adopted which went
beyond the formal laws of algebra ; for V.~ 1+v/— 1, it was agreed,
ghould be replaceable at will by — 1:

v=iv=1=-1.
With this yunderstanding, it is possible to write, not merely .
@+ =)@ + V'V =1)=aa'+(ab’ +ab)V -1+ b'V-IvV -],

stand for something ? I so, what is the thing for which v — 1 stands? Oriss
symbal gn object having independent existence? If so, what is the object,
V=18 .

Such definitions of v'—1 as * the indicated root of a negative quantity ™
leave the beginner mystified unless he has sufficient insight to discern that words
#re heing formed which collectively have no meaning,
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tatto modify the resnlt still further and set
@+ bV =1)(a' + ¥V —1)=aa' ~ bb' +(ad' + a'b)w/ 1.
We have here the forerunner of the definition of multiplication.

Applications. This formal acceptance of v/ — 1 opened the way to
further developments of the greatest importance in the field of al-
gebra and algebraic geometry on the one hand, and on the other, in
analysis. For it was early surmised that every algebraic equation
has a root in the domain of imaginaries. This granted, algebraic
geometry mounts up from an insignificant mags of inequalities to a
well-rounded science, homogeneous and having mathematical eontent.
Thus a cirele,

2 +yt=at,
is cut by a straight line,
Ax 4 By +C= 0,

at most in two points, and the order of multiplicity of straight lines
which do not meet the circle at all is as great as that of those which
do —in the domain of reals. But in the domain of imaginaries, a
straight line cuts the circle in general in just two points, and the ex-
ceptions (tangents and nulllines) form a manifold of lower order.

In analysis, the elementary transcendental functions (sin z, cosz,
e®, and their inverses) were well known in the domain of reals.
‘What meaning is to be attached to them in the realm of imaginaries ?
This question presents itself in altogether concrete form when one
seeks the solution of a linear differential equation with constant co-
efficients, and it is there that it is best treated. We ask the reader,
therefore, to turn back to Chapter XIV, § 12 and follow the account
of the heuristic considerations which finally led to the equation

eV-i=cos¢+V—1sing.

3. Geometrical Representations. (a) Points of a Plane. After
the formal period had forecast the importance of v/ —1 and before
modern ideas of rigor through definition had made progress, there
was flashed upon the screen of mathematics a geometric picture
which went far toward uniting the past of the imagination with the
future of the reality. Simultaneously and independently, Gauss,
Argand, and Wesse! perceived that a point in the plane, whose ocor-
dinates are (z, y), can represent the imaginary number

p=2+yv—-1 .
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In the word “represent¥ there is a petitio, for how onxi-that which
does not yef exist be represented? And yet the point exists, and
the pair of numbers (x, y) exists. 8o it came about that mathema-
ticfans were easier in their minds concerning imaginaries, now that
they had this other system of points in a plane to stand in the place
of these mystical objects.*

(b) Vectors. A second geometric representation of the number
# 4 yV— 1 consists in the vector { drawn from the origin to the
point (z, y). Let

%A =a+ bi, 8 =c+di,

(where from now on we shall replace v — 1 by Euler'’s notation for

it, namely, ©) be any two compléx { numbers. They are defined as
equal, i = B, ifand only if a =¢

) @ and b =d. Their sum,

5 A4+-B=G,

Fra. 117 is defined as the number

S=a+c+(b+d)s
The vector which represents € is constructed geo- By
metrically by the law of the parallelogramme of @
forces, and the construction is known as vector addi-
tion. Furthermore Fia. 118

B—U=c—a+(d—Dd)i )

Polar Coordinates. A complex number, z == z - yi, can be writ
ten in the polar form:

z + yi = r(cos ¢ + 7sin ¢).

1t we may anticipate the historical account, it remained only to recognize
that the essence of & number-system is ({) a class of objects, and (4i) the postu-
lated laws connecting them. In-thissense we may say, if we like, that the points
of the plane are the numbers. This thought, although formulated explicitly
much Igter, was In the minds of mathematicians as soon as the geometric repre-
sentation became known.

1 The redder should now turn to the chapter on Vector Analysis and read the
firet paragraph. .

$Thé term, imaginaries, emphasizing the mystical, gradually. gave way to
the term comples numbers, emphasizing the dependencs of @ + bi on the com-
plex of real numbers, (a, b). We still speak, however, of { as the imaginary
unit, and of ai, where g in real, as-a pure imaginary.
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Here, r is the absolute value of 2 :
[z|=r =Var 33
¢ is called the angle of 2, and is written : * ¢ = arcz.

Multiplication. The product of two complex numbers, % ==
#m+ni and 2 =z, + y,i, is defined as suggested by the formal
work in § 1: .

%12y = Ty — Yoz + (@Y + DY),

When z; and 2, are written in polar form, )
2 = r,(cos ¢, + i8in ¢y), 2%y = r3(C08 ¢, + i sin ¢y),
the product becomes
7i72{ €08 1 €08 by — 8in ¢y sin @, + (sin ¢, cos ¢, + cos ¢, sin )i},

Hence -
212y = 1173 (CO8 ¢y + ¢y + t8in ; + $2).

We are thus led to the following rule:— 7o multiply two complex
quantities, multiply their absolute values and add their angles.

Geometric Interpretation. 'The vector which represents the prod-
uct, z;2;, can be constructed geometrically as follows. Consider first
the triangle whose vertices are at the points
0,1, 2. Draw a second triangle similar to ¥
this one, in which the line joining 0 with
the point 2, corresponds to the side from 0 A
to 1. Then the other side which emanates A/ %o
from 0 will make an angle ¢, + ¢, with 4,
the positive axis of reals.} Denote its
length by B. From the similarity of the A—
triangles, Pra. 119

B_n or RBR=nrr.

Te - 1’

Hence the third vertex of the triangle is at the point %2,
The geomstric construction emphasizes the important fact that,
while addition is a process defined in terms of the vectors alone,
irrespective of the coordinate axes and the unit of length, multipli-

* ¢ in sometimes called the modulus, and ¢, the amplitude or argument. But
these words have #0 many other meanings in mathematics that they are not dis-
tinctjve for the present purpose.

“+¥he axis o x is called the azis of reals, and the axis of y, the axis of pure

imaginaries.
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cafion bears jointly on the given vectors and the shoice of the vestor
which represents the number 1. .

Division. Division is defined as the inverse of multiplication :

w=2 if we=2z or zw= g,
%

Thus 2 rz{cow; @2 + isin ¢; — %}

Division is always possible and unique except when the divisor,
2,, i8 0, and then division is not defined.

The Formal Laws. Addition and multiplication obey the five
Formal Laws of Algebra, § 1. In particular, the Commutative Law
holds for multiplication as well as for addition :

%1% = Ty,

Furthermore, as in the ordinary algebra of real numbers, a product
vanishes when and only when one of its factors vanishes.

Definitions. If a4 b is any complex quantity, then a — b is
called the conjugate imaginary, or is said simply to be conjugate to
it. A real quantity coincides with its conjugate.

We furthermore lay down the definition:

44 e = cos ¢ + i sin ¢.
Thus etvi = e* (cosy + Esin y).

And again, if 2 =2+ yi, then 2z can also be written as reé#.
By the unrit circle is meant the circle

2+yt=1
EXERCISES
1. Show that 2% =22 — y?+ 2ayi, and find 2%,
: 1 e+ di
2. Express oy and e b

in the reduced form of s complex number, A 4 Bt.

8. Prove that the sum of two conjugate imaginaries is real, snd
that. their difference is a pure imaginary. Prove that their prodqct
is real, When will their quotient be real? ‘

\

»



COMPLEX QUANTITIES &7

4. If G(») is a polynomial with real coefficients, and if z and # are
conjugate imaginaries, prove that ((z) and G(Z) are conjugate
imaginaries.

5. If R(z) is any rational function with real coefficients, and if
z and Z are conjugate imaginaries, prove that R (z) and R(Z) are
conjugate imaginaries.

6. Prove the theorem: if |#|> 1, the point which represents 1/¢
is obtained as follows. Draw the tangents from z to the unit circle.
The intersection of the chord joining them, with the line from 0 to z,
represents the conjugate imaginary of 1/2.

3. Inequalities. If # and ® be any two complex numbers, then
@) [+ 8| = (%] +]B]

For, any side of a triangle is less than the sum of the other two
gides ; cf. Fig. 117, § 2. Hence, for a true triangle, only the sign of
inequality can hold. But if % and B are collinear, f.e. are parallel

vectors, the sign of equality may hold. From (1) it follows gen-
erally that

@ |4y + 4s+ o + A, | S A+ da+ 0 +] 4]

EXERCISES
1. Prove that

| —18|< |2 —8l.
2. Prove that
:/1—‘—2[IGI+|b[] <la+ bi| S [af+1B)

4 Powers and Roots. If
A= A(cos o + isin a) = Ae¥
be any complex number, then
A? = A? (cos2a + {9in 2a)= Ate*,
A = AP (cosBa + isin 3a)= A%,
v = A (008 mar + 1 810 na)= A%,
- By an n-th root of 4 (n, & positive integer) we mean a number

% == re* puch that
1€ . =4
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Hence et == Ag™,
The complex numbers which stand on the two sides of this equa
tion, being equal, must have the same absolute values, and hence
= A, r== 'CJ’_A

Their angles, however, need not be equal. It is necessary and
sufficient that they differ from each other by an integral multiple of
27 or 360°:

. np=a oa+2r, atdmr, oo
«—2x, a—4m o

In particular, we may take 0 = a< 2w, and then we find n
values of ¢ leading to distinct points of the plane, namely:
¢=a a+21r’ a+41r, .

ot+2kax a+25n—1!1r
g ’ y %y .

H
n n n n n

All other values of ¢ lead to one of these n points.
Hence it appears that the n roots of equation (1) are given by

the formula:
1 (e42ka)

@ 5 =Ae & , k=0,1,.,n—1

Discussion. Consider firat the roots of unity:
" =1

Here, A=1, «=0, and the roots lie on the unit circle at the

points

2, 4, Ho—Br,

1, e*, e,y e

thus forming the vertices of a regular inscribed polygon of n sides.

OOQOO

Fia. 120

It is now easy to interpret geometrically the general case. Draw
1

first the circle r=A", and mark on it a point, P, sach that the
tadive drawn fo it makes an angle a/n with the positive axis of
renls. Inscribe a regular polygon of n sides with one vertex at P.
Then the vertices of this polygon represent the » roots of 4. '
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EXERCISES
1. Determine all the roots of the equation
=2+ 44

and ‘plot them, showing the corresponding pentagon.

8, Fi}:d the cube roots of —1 and plot them, showitig the cor-
responding equilateral triangle. Similarly for the fourth, fifth, and
sixth roots of — 1.

8. Write the polynomial

4 al

(%) as the product of its linear factors; (i7) as the product of its
real quadratic factors.

4. The same for o8 + qf.

5. The sum of the n n-th roots of unity is zero. Give both an
algebraic and a geometric proof.

6. Show that, if v is an n-th root of unity, all the integral powers
of w are also roots of unity; and that, if & be properly chosen, the
7 roots can be written:

o, o, o . W™, =1
_Sli
One such choice for wis e*.
7. Solve the quadratic equation

P=141

by writing 22 in the form 2?— y® 4 2xyi and then equating reals
and pure imaginaries on the two sides of the equation. Plot the
vecotors, drawn from 0, which represent the roots, and show how they
are related to the vector which represents 14 ¢.

Generalize for

2=a-4 bl

8. If n complanar forces, acting at a point, are represented by the
complex numbers z, 2, -, %,, show that a necessary and sufficient
condition that these foroes be in equilibrium is:

ﬂl+z, 4 vee + z"=0.
5. The Function ¢ We have already defined ¢3! and e¢*, where

g=w4yi, in §1:
@ & = e™¥ == ¢” (cos y + ¢ sin ).
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But what justification, what reason, is there for this definition be
yond the mere formal work of § 17

The same question presented itself in elementary algebra when
we passed from a*=a-a-.---a (v times), where n is a natural
number, to the new and extended meaning of a”, where n is a frac-
tion or a negative rational number, and finally to the completed
definition of a® where z is any real number, integral, fractional, or
incommensurable. It was the formal law

(2) ara™ = an-Hn
that guided us then, and it is that law now which expresses the
essential property of the exponential function. This law is known

as the Addition Theorem for the exponential function and can be
expressed in general terms as follows:

@) S@+y)=r@/@),
where z and y are any two numbers — real, in the case of elementary
algebra, complex for our proposed extension (1).

Does our new function (1) measure up to this etandard? Is it
true that
4) entn = enegn 7

Ask the definition. That is the only source of an answer.

eten = e"1(Cos Y, + isiny,; ) €% (cos Y, + ¢ 8in yy)

=1 (coB Y + y2 + U8 Y, + ).
But this last expression is precisely e*%, and the new function has
stood the test.
Moreover, just 88 e* is uniquely defined and is continuous for all
real values of 2, s0 ¢* is single-valued and continuous for all complex

values of z.
But is this all that we could ask for? Two further properties of

the real function e are:
d
8 (a) £=0’; (b)e'=1+z+_2‘i:+..._

That ¢* also has these properties, will be shown in §§ 12 and 16.
Over and above that which could be expected we find, however, an

entirely new property : — The function e° is periodic in the tmaginary

domain et o g, ’

o

It has the imqginm’ygzeriod 2xi. L
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EXERCISES

.
T .

1. Show that M=—1 eV x=i

2. Compute the value of e* in the form a 4- b, determining a
and b to four places of decimals.

8. Show that

.

lel=e and |em|=1,
where z=2 +yi and ¢ is real.

6. The Function logz. In the domain of reals the functions e*
and log « are inverses, the one of the other:

y=1logz if e =2z,

In the domain of complex quantities we will adopt the same defini-

tion and say:
w = logz if e =2z

Let w=u + vi, z==r(cos ¢ + 1 5in ¢).
Then log z is given by the equation:
evt” = r(cos ¢ + I sin ¢).

Since the complex number which stands on the left of this equa-
tion is the same as the complex number on the right, it follows
() that their absolute values must be equal; (i) that their angles
must be equal, save as to a multiple of 2=:

({) e =r, u=logr;
()] v=¢ + 2kmr
Hence
8)) log z = log r + ¢i,

where ¢ may be any one of the determinations of the angle of z.
Thus it appears that, while the real function logz was single-
valued and defined for positive values of z only, the extended func-
tion is defined for all complex values of the argument, except 0, and
is infinitely multinle-valued.
In particular, a negative number, — a, now has a logarithm:
log (~ a)=log a +(2k + 1)ri.
Thus log(—~1)=w=i, or —=i, or 3=i, ete.
Moreaver, a positive number has an infinite namber of logarithms,
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Thus logl=0, +2», £ 4xi, ...
‘We note that
esd = 4, log e? = B + 2k,
where A is any complex number = 0, and B is wholly arbitrary.
Formula (1) is sometimes written in the Cartesian form:
@ logz=«}log(a:’+y’)+ita.n-l§-

But this is wrong, since not every value of tan-1y/z is admissible
Thus, for example, this formula would make

A, log(-—l-—i):,}log2+£i+kri,

where k is any integer, Whereas in fact & can
here take on only odd values. For, one determi-

12 nation is
F1a. 121

log(—1—i)=1}log2 + §i,
and the others differ from it by multiples, not of =i, but of 2=i.
No confusion can arise if the value of ¢ in (1) is read off from
the figure. There, ¢ is the angle, measured in radians, which be-
longs to z— any value of this angle.

The Functional Relations:
® log 2, + log 2, = log (2124) 5
@) log#* = nlogz.

The first equation holds for any two complex numbers 2, z,, both
different from 0, where any two of the three logarithms may be
chosen arbitrarily among their possible values, and the third then
suitably determined. The second relation depends on the extension
of the definition of the function #*; ¢f. infra.

The-Generalized Power, A®. Let A and B be any two complex
numbers, provided A:0. Then we define

(5) AB pu— elloll,
where log 4 has any one of its possible values. Thus
= 3’;, e!i!, ey e—-; +3hn

+ I wonld now appear as if there were a confliot with the former
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definition of #*, gince now
e = el(loll) = e:, e.u-n.o,
We cut the knot, however, by restricting the notation e* to its mean-
ing as given by § 5, (1).
The Functional Relation (4) is seen to be valid, where the logarithm

on the right may be chosen at pleasure, and then both z* and log z»
are in general uniquely determined.

EXERCISES
1. Find all the values of log 10.
Ans. 2.30259 4 2kni, k=0, +1, £ 2, «,
2. Find all the values of log(2 — 317).
Ans. 1.2826 — 0.9828% + 2 kxrt.
3. Find all the values of log(— 5 — 61).
4. Determine all the values of »™.
5. Compute the values of (1 4 i)*
Ans, (535.5)4(0.4288 + 0.15481), k=0, £1, £2, -
8. Show that
APAC= AP*C, A=+0,
where any one of the three quantities 4%, A4°, AZ+C may be chosen
arbitrarily among its possible values, but in general neither of the
remaining two can be so chosen.
State precisely the latitude of choice in the relation
5\/55\/5 — pVI+VE

7. The Functions sinz, cosz, tanz, ete. From the equation of
definition, §1:
@) e% = cos ¢ + 18in ¢,
where ¢ is real, follows that

e% =cos¢ — t8in é.
Hence

i —é
(2) Bin ¢ = g__-'-_e.——.

2

e —
2i

Now that e is defined for all complex values of the argume_nt, the
right-hand sides of these equations have & meaning when ¢ is com-
plex. What more natural than to take these extensions as the defi-

Cco8 ¢ =
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nition of the functions sinz, cosz for complex values of the
argument, and see what happens?

. e — e—il eu + e—l'l
3 sinz = —-—,\ 0082 = ~—

The essential question is: What are the most important analyti-
cal properties of the trigonometric functions, sinx, cos»? Again,
the answer is flashed back to us in the form of the .Addition Theo-
rem for these functions :

@ { 8in (2; + %.) = 8in 2, €08 25 4 COS 2, 8in 2,,

€08 (8; 4 2;) = €08 2, €08 23 — 8in 2, 8in 2,,
Unless the extended functions satisfy these relations, equations (3)
are but a hollow nut. And so it is with curiosity that we compute
the right-hand side of the first of these equations from the defini-
tion (3). On reducing the result by means of (4), § 5, we see that
the equation is, indeed, true. And likewise for the second equation.

Moreover, the extended functions are single-valued and continuous
for all values of the complex variable, 2.

Is this all that we could desire ? The real functions sinz, cosz
have derivatives, given by the familiar formulas, and the functions
satisfy a linear differential equation of the second order, which in
turn dominates these functions completely. And, finally, there are
the power series expansions. Will these properties persist? The
answer is most satisfactory. We shall show later that

dsinz dcosz
() —==% = ¢o
() dz B 2,

thus the functions sinz, cosz are solutions of the linear differen-
tial eguation of the second order:

(6) dﬂ’-{-w 0,
and, finally, that
sinz = z— z.+-§-i_...,
]
2 2t
oosz—1—2'+ TN \

The other trigonometric functions are defined in terms of sinz
eos%:
ginz _ 1e*— e""
(8) . t&n!amz*::'e“*_ )
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1 1 1
(9 oty = —— 880 2 = —~—m — .
) tanz’ cosz’ csos sinz

In the domain of reals there is no relation between the trigono-
metric functions oun the one hand, and the exponential function on
the other. In the domain of imaginaries, we have here hefore us
only a single class of functions.

EXERCISES
1. Compute sin (1 + 9). Ans. 1.299 4 0.635 ¢

1—itan®
1 112.

1+ itan
+1 D2

8. The Inverse Trigonometric Functions, sin~!z, tan~1z, etc. The
anti-sine is defined by the equations:

9. Express ¢* in terms of tanz. Ans, ¢ =

Q) w=ysin"lz if shw=2z
For the determination of w we have, then:

e — et

2i

= Z.

Hence
e° _2zev—1=0,

3

ev=izxV1i-2, w=1ilog(iz +V1—2%.

The final result can be written in a variety of ways (cf. Peirce’s
Tables, p. 79, No. 643). Since

1
~log(iz + VI =2} = log —————
8 ( 2i+Vl-2

and
-—-—-—1—__:—__—'—__ =3 '\/1 -t — iz,
fz +V1—2°
Wwe may write:
2 gin71z = i log[V1 — 2% — iz],
where it is understood that doth values of the radical must be

observed.
The anti-cosine and the anti-tangent are defined and computed ir

8 similar fashion:
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5 w = cos~iz if COB W == &,
® cos—lg == flog(z + iv1 —2%).

w=tan"lz if tanw = g,
C)) t42

1y = Y log LT E.
tan~1z 2ogi

As was to be expected, the inverse trigonometric functions and
the logarithm form, in the complex domain, but a single class of
fanctions.

EXERCISES

Compute the following, determining all values:
1. sin™ 2, 2. coslb, 3. tan= (1 4+ i).
4. Show that the two formulas 49 and 50 given in Peirce’s
Tobles for dz
f a+ bz

are identical in the domain of imaginaries,

9. The Hyperbolic Functions. Certain functions analogous to
the trigonometric functions, called the hyperbolic functions, have
recently come into general use. They go back, however, to Riccati
(1757) and are defined as follows :

e* —e™*

sinhm = 5 H

005hm=-e—'—+2~e:.;

_ sinha
tanh 2 = coshz’

ete. (read “hyperbolic sine of z,” ete.). An abbreviated notation
for sinhw, coshz, tanha, is sha, cha, tha., The graphs of thess
functions are shown in Fig. 122.* The functions satisfy the follow-
ing relations, shz and thz being odd functions, chz an even
funotion :

$h(—2)=-—sh», ch(—2)=ch2, th(—z)=-tha

#Ths graph of the tunction oh = is identical with the figure of the catenary,
o Chap. XIV, § 8.
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Moreover: sh0==0, ch0 = 1, th0o = 0,

Also: chlz —shir = 1,
1 — th*z = sech?s, coth?z — 1 = cach? .
y=sho y=chs
v y
y=the
—_—Y
€ 1 2 1 =
/‘0 6] 7]
Fra. 122

The Addition Theorems are as follows:
sh(z +y)=shzchy 4+ chashy;
ch(z +y)=chzchy+shzshy;

th — thoztthy
@)= thathy

From these relations follow at once:
sh2x = 2shzche,
ch22 = ch®2 +sh?z =2ch’2 —1 =1 4 2sh?x.

Derivatives of the Hyperbolic Functions. The derivatives have the
values :

d sh dch
—-Ef=chw, C1% —shz,
Athe _ soohrg,  2ORZ _ _ ogohra,

The Inverse Functions. The inverse of the hyperbolic sine is
2alled the anti-hyperbolic sine:

y=sh1lz if =z=shy

Hence z=3(e¥ —e™).
Solving for ev, we get:
e =x+ V1 4+ 2%

Since ¢ > 0 for all values of y, the upper sign alone is possible, and
y = shlz = log(x +V1 4 2.
The anti-hyperbolic cosine, however, is multiple-valued, as ap-
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pears from a glance at its graph, obtained as ueual in the case of an

inverse function by rotating the graph of the direct function abou¢

the bisector of the angle made by the positive coordinate axes :
ch™lz = log(x + Va* ~ 1), z21

The upper sign corresponds fo positive values of ch~1z.

Also: th’la:—«}logl'*'m —-1<2<l

The derivatives have the values :
dshlz - 1
de Vit ’
' §
dchip + 1

T E—1
dthz _ 1
iz 1-a

We thus obtain a close a.na.logy between certain formulas of

integration :
d% __ _ gin -1“’ f = sh %,
Vat =z N7 a’

. dz 1 x dz 1 z
=1tann? =12,
) fa‘ +2 a a’ @2—2 a a

A collection of formulas relating to the hyperbolic functions will
be found in Peirce’s Tables, pp. 81-83, and tables for shz and chx
are given there on pp. 119-123.

Relation to the Equilateral Hyperbola. The formula:

s f\/i—:a?!dx=;m/1_——zz +}sina

expresses the area QOQPA under a circle in terms of the function
sin~1z and enables us, on subtracting the area of the triangle OQP
from each side of the equation, to interpret sin~1z as twice the area
of the dircular sector OPA.,
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There is a similar interpretation for sh—1z with reference to the
equilateral hyperbola
=142

J\/l +m’dx=%zx/1+z2+}log(z+\/1+5?)

= }2V1+af+ }shtz
Thug we see that sh~'x is represented by twice the area of the

hyperbolic sector, OPA.
To the formulas for the circle:
#+y=1,
x = sinu, == C€OS Y,
correspond the following formulas for the hyperbola:
!/’ - = 1)
x = sh u, Y= ch U,
the parameter u being represented geometrically in each case by
twice the area of one of the above sectors.

The analogy of the hyperbolic functions to the trigonometric
functions is but another phase of the fact that in the domain of
complex quantities the trigonometric and the exponential functions
and their inverse functions, the anti-trigonometric functions and the
logarithms, are closely related. Compare the formulas which de-
fine sh x and ch z with those of § 7 which express sinx and cosz in
terms of e*.

The Gudermannian. Let ¢ be defined as a function of z by the
relation :

shz = tan ¢, ¢ = tan1shz, _Zr2_<¢<§.
Then ¢ is called the Gudermannian of z and is denoted as follows :*
‘We have: '
shz = tan ¢, chz = sec ¢, th z = sin ¢,
esch z = cot ¢, sechx = co8 ¢, cothz == csc o
and since e =chz4sha,
x, $ X, 4

% Also oalled the hyperbolic amplitude and denoted by amh 2
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‘ EXERCISES
1. Show that
sinaf = ¢ sh®, cos i = cha.

2. Show that
sin(® + yi)=sinachy 4+ {coszshy.

10, Limits and Continuity. A complex variable, as

8y = U bty e Y, * ,
where the u,’s are complex numbers, is said to approack & limit, if
the points of the complex plane which represent it, approach a
limiting point.

' An infinite series of complex terms,

R X PR

is said to be convergent if the sum of its first n terms, s,, approaches
& limit,

In order that a complex variable, Z = X + Yi, approach a
limit, it is obviously necessary and sufficient that the real part, X,
by itself approach a limit, and that, at the same time, the coefficient
Y of the pure imaginary part, by itself, approach a limit.

Let S be any two-dimensional region of the complex z-plane, and
let a complex number, w, be assigned by any rule whatever to each
point, 2, of 8. Then w is said to be & function of z, and may be
written in the form

w = f(2).

The function f(z) is said to be continuous at a point z, of S if f(2)
approaches a limit when z approaches % in any manner whatever,
and if the value of this limit is f(z,) :

lim f(2)= f (z).
e,

The foregoing definitions may be formulated as follows. The
functipn f(z) approaches a limit, 4, when z approaches z, if, to any
arbitrary positive real number, ¢, there corresponds a positive real
number 8 such that ',

If(z) - di<¢
where ¢ has any value for which

0({!-—-2.’4'. » < ool
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By saying that « is arbitrary we mean that it may be chosen again
and again, and esch time, as small as we please, but real and positive.

The function f(2) is continuous at z, if

@~ S <e [z — 2] < &.

A fonction of a complex variable may be defined only along a
curve of the complex z-plane, or even merely in a set of diserete
points, like s,

EXERCISE

Bhow that, if 4 is any complex number snch that [A{< 1, the
formula of Elementary Algebrs, :

1 An
—_— =1 2 vee n=i -
—a-1t4+ &+ + 47+

still holds, and thus the infinite series
14 A+ A+ -
converges to the value 1/(1 — 4).

11. The Derivative. The definition of a derivative given at the
beginning of the Calculus holds here unmodified. Let z, be any
point of 8, and let w, be the corresponding value of the function:

wy = (%)
Give to z an increment, Az, merely such that 2+ Az is a point of
8, and denote the value of the function by wy + Aw:

Wy 4 Aw =f(20+Az)'
Form the difference-quotient:

é_,'e:f(zo + A2) = J (%)
Az Az

If this variable approaches a limit when Az approaches 0, then
J(®), or w, is said to have a derivative at z = 2, and we write:

lim %0 =Dw or ﬂ&%ﬁfﬁl = J"(%).

A

The five General Theorems, Theorems I-V, Introduction to the
Culeulus, pp. 22-35, hold as in the case of reals:

L D,(cw) = cD,w,
II' D.('pl + ‘wz) = D.wl + D.“’s’
ete.
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Morecver, the differential is defined in the same mannsr:
dw == D w- Az,

and it is shown that
dw = Dw dz,

even when both 7 and w depend on a third complex variable, &
The special formulas :

dc=0, dz" =nz*1dz, n,a natural number,

are also established as in the real case of reals.
It follows at once, as in the case of reals, that all polynomials
have derivatives. Thus
gz—(az2+bz+c)=2az+b,
where the coefficients a, b, ¢, are any complex constants.
Also, any rational funetion,
' =90
0= Gy
has a derivative for any value of 2 for which it is defined (..
G(z) = 0). In the case of transcendental functions, however, the
proof of the existence of a derivative is indirect, and will be taken
up in the next paragraph.

12. The Cauchy-Riemann Differential Equations. A very simple
function of a complex variable may fail to have a derivative. Con-
sider, for example,

W= T — Yt
This is a function of 2, for, when 2 is given, w is determined ; and
morecover the function is obvicusly continuous, Give to z a value
%, and form the difference-quotient:

W = 2y — i, o + Aw = (2o + AZ)—1i (yo + AY),

Aw Az —iAy.
Az Ax + iAy
Firsg, let Az ap the limit 0, i
Thon Ay e 0 mdm ), passing through real values
A

—a=],

Az

Hence Aw/As bas the limit 1 for this mode of approach, '
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Next, let Az appromh- 0, passing through values that are pure
imaginaries. Then Az =90 and

—=-1

Az

Here, Aw/Az has the limit — 1. Thus no limit exista when Az
approaches 0, for the points of the complex plane which represent
the variable Aw/Az do not lie near some single fixed point when Az
lies near 0.

Necessary Conditions. 1t is easy to obtain a pair of necessary
conditions * that the function
w=f(2)
have a derivative. Let w=wu + v/, and let Az approach 0, pass
ing through real values: Ay =0, Az = Az. Then

lim 2% = lim (é;_tHA,v):?_qug,
ox oz

ar=0 AZ  aex0 \ AZ Az
and hence
Dw= a,.—u + i—a—?-} .
ox ox

Next, let Az approach 0, passing through pure imaginary values:
Az =0, Az=iAy. Then
ass0 Az apx0\7 Ay Ay
Hence 2 -
=9V __ 9%,
Dow= 3 i ™
On equating these two values of D,w and observing that the real
parts of the two expressions must be equal by themselves, we see
that 5
fu__ ov ou v
4 == U
) ox 8y’ oy oz
The result may also be written in the form of a single equation
in omplex guantities :
(4) dw__ 10w
&z iy
Thes\» &re the necessary conditions we set out to obtain.

. ;lThe student will do well to turn back to the Introduction to the Caleulus,
&;1 J » &nd make sure that he has clearly in mind what is meant by a necessary,
what is meant by a syficient condition.
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Suficient. Conditions. If we assume that the real functions
u=u(z,y) and v=-v(2,y) are continuous, together with their
first partial derivatives, then the equations (4) form, conversely, a
syfficient condition, that w = u +vi have a derivative. For,
: ou

Ay = %Az-i—ayAy + L% + LAy,
Av=-g—”A:c+@Ay + LAz + LAy,
X cy

where the {’s are all infinitesimals, Ax and Ay being the principal
infinitesimals ; Chap. V, § 3. Form the quotient,

Aw _ Su+iby

Az Az +tAy
Since equations (.4) are true, it is clear that

ou on [V o ou , .0V .
(——Aw + —?—,Ay)+ z(-—A:v +—Ay)_(%+ 15;)(61 + i ay).

ox 0 ox oy
Hence
B _fu, 00 AT e B,
—A;—bx+"3z+(c‘+'c‘) Az+(t2+l€‘)Az

Now |Az|<x|Az| and |Ay|<|Az{, and the parentheses,
Li+ily, and (4 il are infinitesimal. Hence Aw/Az ap-
proaches a limit when Az approaches 0, and thus the function w is
seen to possess a derivative. Moreover, the value of the derivative
is given by the formula:

O 00
(B) D=2+ iz

The equations (4) are known as the Cauchy-Riemann Differential
Egquations.

A function w of the complex variable z which possesses a continu-
ous derivative is called an analytic function. Unlike the situation
in the case of reals, it is only the analytic functions of a complex
variable which have important properties.

Boample. The function e is analytic. Here,

% = e*C08 Y, v = e*giny.
%:e’cosy, g—:mc'siny, .
. 0
$="‘¢'m% a“:“‘"m% X
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and the Cauchy-Riemann Differential Equations (4) are satisfied.
Thus ¢* has a derivative, and it is given by the formula:

%+i%=ecosy+ie’ainy=e‘.

Hence
@ %e=a

EXERCISES

1. Show that the function sinz has a derivative given by the
formula:

dsinz_ co8 2.
4. Show similarly that
d . d tan d
%:—-smz; Wl=sec*z; ——‘S’:—z=—csc’z.

3. Prove that the Cauchy-Riemann Differential Equations, trans-
formed to polar coordinates, are as follows:

u_1ov 1ou_ v,
or roé’ rod or
4. Show that the function
w=logz
has a derivative, and that
dlogz_ 1
ds  z
5. Prove that
dsin-ls= 1 dtan‘lz= 1
iz i-a 142

13. Laplace's Equation, Au=0. If w=u+vi is an analytio
function of the complex variable z=z 4 yi, then the real part, u,
of the function satisfies Laplace’s Equation :

) Au = %

For, u and v satisfy the Cauchy-Riemann Differential Equations

PAu
+— =0.
o
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&

(4), $12. On differentiating* the firat of these with respect to 2,

the second with respect to y, and adding, equation /(1) results.
Converssly, let u be a solution of Laplace’s Equation, (1), through-

out & region, S, which, for simplicity, we assume simply connected.

Form the integral R
(=

o= _3_§dm+3u

oyt

(=, )

This integral is of the form
(t.')

‘/Pds+Qdy

Moreover, the condition (¢f. Chap. XI, § 7)
oP_2Q
oy ox

here reduoces to
Pu  Pu

~% =53
and thus is fulfilled because of (1). Hence the integral is inde-
pendent of the path of integration and thus represents a function
v, gingle-valued in 8.

Furthermore, the function v thus defined has partial derivatives
given by the formulas:

o0__ou o0 o
o% % oy oz

But these are precisely the Cauchy-Riemann Differential Equa-
tions (A), §12. Hence u is the real part of an analytic function
w=u+vi of the complex variable 2=+ yi. The functions u
and v are called conjugate; cf. Chap. XI, § 17.

Thus the theory of Laplace’s Equation in two dimensions is coex-
tensive with the theory of analytic functions of a complex variable.

14. Canchy’s Integral Theorem. By the integral of a continuous
funetion of a complex variable along & curve 0 is meant the limit of
the sum:

#It can be shown that any two functions, u and v, which are contingons,
together with their first partial derivatives, and satisfy (4), § 12, possess con~
" ot second partial derivatives,
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4

n=1
® tim 3 1) 80, = J 1),
where Ar,=2,,,—2,. Since
J(2) Az, = (u, + iv,)(Az, +iAy,) f 5 K

== 4, Ay — 1, AY, + 1 (v, Az, + u, Ay,
it follows that

2 Jf(z)dz:fuda—vdy+ifvdw+udy.

Let M be the largest value which |f(z)| takes on along C. Since
by §3, (2),

Fie. 124

n-1

IZf(Z») e 2 | /@) | Az,

and since |Az,| =1, the length of the chord joining 2z, with 2,,,, it
follows that the last sum is not greater than

MbG+0++ 1)
The parenthesis, being the length of a broken line inseribed in O,
approaches as its limit the length, I, of C. Hence we infer that

IJf(z) dzlé Ml

CavcaY’s INTEGRAL THEOREM. Let f(2) be analytic throughout the
interior of a region S and continuous on the boundary, C. Then

ff(z)dz:O,

where the integral is extended in the positive sense over the entire boun-
dary, C.
For, each of the line integrals on the right of (2) is of the form

¥ dew"’ Qdy,

Q and since f(z) is analytic, u and v satisfy
s the Cauchy-Riemann Differential Equations
7] g (A), §12. Hence the further condition,
Fia. 125 3_1_’ Zg’

is fulfilled for each integral, and so each vanmhes ; Chap. XI, § 7.
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15. Caushy’s Integral Formula. From tho theorem of s 14
Cauchy deduced the following formula:

@ 10 =5 J f0%,

where 2 is any interior point of S, and the integral is extended over
the entire boundary C in the positive sense.
% Draw a small circle, I, about z and remove this
s circle from 8. In the region 8’ thus obtained,

@ £

regarded as a function of ¢, zbeing constant, satis-
Fio. 196 fies the conditions of the theorem of § 14. Hence

@) JM+JM=0,

t—z t—2

The second integral is extended in the clockwise sense, and can
be evaluated as follows. Let
t—s5=pe"
where ¢ is a point of T, and p is the radius. Then
dt = ipe*dd

JL;M,: fm=_,j}<,+,,,-9a.
-z pe®

Now let p approach the limit 0. The last integral approaches

f £(2) 20 = 27 £(3);

and

for the integrand is continuous in the two indepencent variables,
p and 4. The same is, therefore, true of its real and its pure
imaginary part, and so the theorem of Chap. XIX, § 1 can be applied
to each of these.

Th? first term in (2) does not depend on p. Henoce we have:

J‘ 1}% —2xif(E) =0,

and thus (1) is established.

[ v 3
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Differentiation under the Sign of Iniegration. An integral of the
above form:
$(2) = / 10
—_—2

where f(¢) is continuous along C, can be differentiated according to
Leibniz’s Rule. For,

$(s+ A7) — ¢ () = f o(— =)

Ar t—1z
Hence .
$(2+42)— () _ f(ae
Az (t-z—Az)(t ~2)
and ’

pE+AD—$() (IO _,, Sy .
Az (t —2) J(t—z—Az)(t—-z)’

This last integral remains finite as Az approaches 0. The right-
hand side of the equation, therefore, approaches 0, and the theorem
is proved :

3 ty = [ SOdt,
®) ¢ [(t_z),
From (3) we infer the following formula for f’(z):
-1 [rod
@ rO=5= f 75
The process can be repeated indefinitely, and thus we have:
"(g) = L nat_
® row =g [T

EXERCISE

If 8 is a circle with centre z =a and radius =, and if M is an
upper limit for |f{¢)| on the circumference, C:

FOIES

U‘f(t)dt! < j'Mrd0= 2e M
t—a r

show that
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Henoe If@) s M.
Show further that
[7®(a)| S Mnls,

18. Taylor's Theorem. Let f(z) be analytic within a region 8
and eontinuous on the boundary, C. Let g be any interior point of
8 and let = be the radius of the largest circle about a which con-
tains no point of C in its interior. Then f(z) can be developed by
Taylor’s Theorem throughout the interior of this eircle:

O sO=r@+r@e-o+L8e-apt ., js-al<r
1 .

The proof is brief. Let ¢ be any point of C, and let z be an in-
terior point of the circle. Then

8 2—al <1, [t —al 2.
Write
1 _ 1 -1 1
tt—z t—a—(z—a) t—a 4 z-—a
t—a

This last fraction is of the form 1 /(1 — 4),
where | A] < 1. The formula of Elementary
Algebra for the sum in a geometric progres-
sion holds here, § 10, Exercise, and thus we have:

1 1 r—a (z —a)>! (z—a) .
t—z'—t-—a+(t-a)’+ ot t—a)y +(t-—z)(t—-—a)"

It remains merely to multiply this equation through by f(¢)/2wi,
to integrate over C, and to interpret the terms:

() dt "2“(; —a) [ F(0) dt (z—a)*f(t) dt

Mo. 127

t—z 2wt ) (t —a)H E—m =2t —ay

The term on the left is equal to f(z) by § 15, (1), and the n terms
of f.he sum on the right are precisely the first n terms of the Taylor's
Seried, by § 15, (1), (4), and (5). Since

J’(z —ayr f(t) dt! éflz— af*

t—z2)t—a) t—a

and If—-—':-slsk-%ﬂ= A, a positive constant « 1; since furthermore
j¢ ~ |2 r —|#] = g, & positive constant ; and sinoe finally | F(5)| S M,
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a positive vonstant, the last term on the right is in absolute value
not greater than
m,,
2ng
where I denotes the total length of C.
As n increases without limit, this quantity approaches 0. Hence
the series (1) converges and represents the function f(z).
If, in particular, f(z) is analytic over the entire complex plane, the
series (1) converges for all values of 2z and represents the function.
Thus the developments

— 2t
e'_1+z+ﬁ+ e

o B 25
smz_z—:i-i-a_..., X

_ 2, 2
cosz=1 —2_!+:1_!—
are seen to hold for all values of z real or complex.

Taylor’'s Theorem throws light on the extent of the interval of
convergence of an expansion of a real function into a power series.
Take, for example, the series which represents the function
1/(1 +2%: .

2 =12t =gt -

@ Txa T rToet

This funection is continuous, together with all its derivatives, for all
real values of 2z, and can be expanded about any real point, z = a.
Why should the above series converge in just the interval

—1l<a<x1?
The question is answered by considering the function
1
@ 137

in the complex plane. This function has singular points at 2 =4,
—i. Hence the largest circle which can be drawn about the origin
(z = 0) and which contains in its interior only points in which the
function is analytic, is the unit circle, and this circle cuts off from
the g-axis the interval in question.

It should be added for completeness that a power series in #
which converges for some values of the argument distinct from 0
and diverges for others, always converges throughout the interior
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of a certain cirele whose centre is at ¥ = 0, and diverges outside thig
circle. It represents, or defines, an analytic function within its cir
cle of convergence.

Finally, Taylor’s expansion is unique; i.e. no second expansion
into a power series is possible, whose coefficients are different from
those of the Taylor’s series.

The proof of Taylor’s Theorem was given by Cauchy in 1831.

EXERCISES

1. Show that the function (2) can be expanded about the point
e=1:
_1
142
Determine the first three coefficients, and prove that the interval
of convergence of the series is
1-vVZ2<z<1+V2

2. Show that the function

=a+a@—1)+a@—17+

1
l1+24 2
can be developed into a power series in =, convergent throughout
the interval — 1 < 2 < 1, and determine the first three coefficients.
8. Show that tan » can be developed into a power series in =, con-
vergent in the interval

» "
— § <zTL 5 .

4. Show that the funetion

142
S —~242°

can be developed about the point z = 2, and determine the interval
of convergence of the power series.

5. Bhow that any rational function,

f--—3 ﬂ’l

can be developed by Taylor's Theorem about any point, a, at which
G(a) % 0, and that the circle of convergence will moh out to the
nearest root of G{s)
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17. Multiple-Valued Funotions. When f(z) is multiple-valued, it
is possible in the cases which arise in practice to separate out a
branch which is single-valued and analytic throughout a certain re-
gion. Consider, for example,

1
1) —_— 1.,
\/1-—2;‘.2-0—22, L
Here, the radicand vanishes when
1-2u24+22=0, z=p.;|:i‘\/1-—p.’.

If u is real, these two points lie on the unit circle. Within this
circle, the radicand is never 0, and the two values of the function
can be grouped o as to give two functions, each analytic within this
circle. Let f(z) be that one of these functions for which f(0)=1.
Then f(z) can be developed by Taylor's Theorem about the point
z=a =0, and we have:

1
p) N
@ s VI=2pz+2

The coefficients, P, (1), can be shown to be the Zonal Harmonics.

= FPy(p) + Pi(u)z + Po(u) 2 + -~

EXERCISES

1. Compute the first three coefficients of the expansion (2) by
differentiation, and compare- the results with the formulas of Chap.
XVI, § 5.

2. Show that the function

log cos x

can be developed into a Maclaurin’s series, and determine the interval
of convergence.

18. Conformal Mapping. We have pointed out in Chap. VI,
§ 8, the nature of a conformal map of one surface on another. If a
region § of the (z, y)-plane is mapped in a one-to-one manner on a
region X of the (u, v)-plane by the functions

u=f(2,¥), v=¢(z, ),
assumed continuous together with their first partial derivatives, and
if the angle under which any two curves in § intersect, is preserved
by their images in 3, then a small triangle in § will go over into &
small curvilinear triangle having respectively the same angles, and
thus any small figure in § will go over into a figure in X which will
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appear similar, though drawn to a different scale and tnrned throogh

an angle.
Let w=f(z)

be a function which is analytic throughout a region § of the complex

pline, and let
dw

— 17
@ | =J"(%) # 0.
It can be shown that the region about 2, will be mapped in a one-to-
one manner on the region about w, in the w-plane. Moreover, this
map is conformal.

To prove this last statement, consider an arbitrary curve, C, ema-
nating from z, and making an angle ¢ with the positive axis of reals.
Tts image, (', will be a curve in the w-plane smanating from w, and
making with the positive axis of reals an angle which we will call y.

*We will show that
M y=9+1
where y is the same for all eurves C.

Let 2’ = 2, 4+ Az be a second point on.C near 2, and let w' = 1w, + Aw

be its image on C’. Since

. Aw
llﬂ K?=(D‘w)"“ = Aer £ 0,
we have:
%z—w=Ae7‘+t, Aw =(Aer + ) Az,

where { is a (complex) infinitesimal.
We know from § 2 that the angle of the product of two complex
quantities is the sum of the angles of the factors. Hence

arc Aw =arc (Ae” 4 {)+ arc Az.

As Az approaches 0, the terms on the right approach respectively
v and ¢, and the term on the left approaches y. Thus the fruth of
{1) is established.
If, now, C, and C, are two curves in the 2-plane emanating from 2 =z,
and making angles ¢, and ¢, with the axis of reals ; and if their images,
| and C}, make angles y, and y, with
[ W-{Plane sqPane C,  the axis of reals in the w-plane, then
G =gty Va=ds+y
and hence

Fia. 138 Ve =9 = Py — ¢y
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i.e, the angle at 0, from C] to C} is the same as the angle at %, from
€, to Oy

The student will find a number of carefully drawn plates repre-
senting such maps in Clerk Maxwell’s Electricity and Magnetism,
vol. I, end ; and also in Holzmtller’s Jsogonale Verwandtschaften.

19. Flow of Heat or Electricity. Irrotational Fluid Motion. The
two-dimensional flow of these substances has already been men-
tioned in Chap. XI, §§ 16, 19. It is Laplace’s Equation and the
Cauchy-Riemann Differential Equations which form the common
basis of that great branch of Mathematical Physics and of those fur-
ther developments in analysis on which higher mathematics rests —
the Theory of Functions of a Complex Variable.



Nore ox Cuar. VII, § 5, Ezample, p. 181.

It is possible to generalize this example and at the same time to
simplify the treatment. Let F (z, y, 2) be any quadratic form what-
soever. Then F has a maximum on the aphere ® =a. Hence
‘Equations (11) must hold at this point for a suitable value of A.
Let the axes of coordinates be so rotated that the point in question
is (0, 0, @). Then it follows from (11) that, for the transformed
equations,

D=0, E=0.
Thus
F(z, y,2) = A2? + 2 Fay + By 4 O

If the term in ay is present, a suitable rotation of the axes about
the axis of 2 will remove it (4nalytic Geometry, Chap. XII, § 2) and
thus F{(z, y, 2) is reduced to the form (13). But now 4, B, C can be
any real numbers whatsoever.

Thus the possibility of reducing a guadratic form to a saum of
squares by means of rotations is shown. The determination of the
actnal transformations which will yield the result is a question of
less importance, though easily answered by Equations (11) It is
not our purpose to treat it here. .

528
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Absolute temperature, 452, 456.
Abeolutely convergent integrals, 468.
Action, 442.
Addition theorem, 500, 504, 507.
Adiabatic changes, 451.
— curve, 458,
Algebra, Fundamental Theorem of, 2, 3.
Alternating integrals, 472.
Amplitude of a ecomplex number, 495.
—, Hyperbolic, 509.
Anslytic funetion, 514,
Angle of a complex quantity, 485.
Ant on turn table, 333.
Appell, 308, 343, 371.
Approximation curves, 395.
Argument of a complex number, 495,
Attraction, 71, 79, 89, 145.
Axig of reals, pure imaginaries, 495.

Band brakes, 326.

Beats, 382.

Bessel’s functions, 353, 402.
— inequality, 400.

Beta funotion, 479, 484.

Bi-lateral surfaces, 240.

- Bi-normal, 162.

Blaschka, 306.

Bliss, 406.

Blondilot, 456.

Bécher, 1, 185, 209, 343, 345.
Bolsa, 406, 415, 427, 432, 439.
Boyle's law, 451, 457.
Brachystochrone, 412,
Brakes, Band, 326.
Buckingham, 456.

Burbury, 252.

Byerly, 208, 207, 374, 393, 400, 402, 490.

Cables of a suspenaion bridge, 320, 321.
Catenary, 817, 412, 426, 429.
Cauchy, 212, 522.
Cauchy-Riemann Differential Equa-
tions, 514.
Caustios, 191,
Centre of fluid pressure, 70,
— of gravity, 55, 78, 88,
Characteristios, 301, 385.
Charles, Law of, 451, 457.

Clairaut’s equation, 353.

Complex numbers, 494.

Confocal quadrics, 183.

Conformal mapping, 169, 523.

Conjugate functions, 249, 5186.
— imaginaries, 2, 496.

Courant, 374, 421.

Cuzl, 302,

Curvature of twisted curves, 304.

Curves on the sphere, cylinder, and cone,

167,
Cutting, 379.

Vv, 303.
Damping, 377, 388.
Definite integral as function of upper
limit, 215.
— —, New definition of, 254.
Definite quadratic forms, 177.

Degree, 1.
Density, 53, 73, 276.
Derivative of a function of a complex
variable, 511.
Differential, Definition of, 115.
Differential equation, Homogeneous, 313,
— — Lineasr, 312.
~— ~— Ordinary, 309.
— — Partial, 359.
Differentials in thermodynamics, 453.
Directional derivative, 143, 145.
Directrix of a catenary, 322.
Dirichlet's Principle, 419.
Divergence of a vector, 302.
Dog and his master, 332.
Dome, 330.
Double Integral, Definition of, 45.
— —, Improper, 485.
~— —, New definition of, 257.
— integration, 97.
Doubly connected regions, 227.
Drum head, Vibrating, 374.
Duck on the river, 331.
Dunkel, 489,
Duval, 482.

Elliptic integrals, 195.
— funetions, 207,
Energy, 452.

521 .
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Entropy, 458, 450,
Envelopes, 180,
Equal areas, Theorem of, 448.
Equation of continuity, 276, 288.
Euler’s equation, 409, 410, 416, 417, 418,
419, 421, 425, 426.

—_— . 121,
Exact differential, 228, 356, 456.
Extremal, 409,

Fasctorial function, 481.
Finite functions, 466.
First law of thermodynaniics, 452.
Flow, Definition of a, 279.
- of electricity, 247, 248, 525.
— of heat, 241, 525.
Flux acrozs a surface, 276.
Foree function, 146.
1 =, Specifie, 73.
Forced vibrations, 379.
Formal laws of algebra, 492.
Four~dimensional hypersphere, 108.
Fourier, 252,
Fractions, 4.
—, Partial, 5, 17.
-, Proper, Improper, 4.
Frenet's formulas, 306,
Freenel integrals, 473. °
Functions, Analytic, 514.
— Beta, 479.
~ Conjugate, 516,
— Elliptie, 207,
— Faetorial, 481.
— Finjte, 4686.
— Gamma, 480.
— Homogeneous, 121.
— Hyperbolic, 508.
— Implicit, 123, 132.
~— of a complex variable, 250.
— Rational, 4, 18.
Fundamental Theorem of Algebrs, 2, 3.
~— = of the Integral Calculus, 80, 90,
258,

¢, 303.
Gireen's thaorem, 222, 233, 303.
134, 130, 146, 177, 342, 358,
870, 871, 421, 442, 489,
500.

Hamilton, 307, 371,

Hamilion's Principle,

Hoat, Flow of, 241.
-— oquation, 247.

&

434,

INDEX

Hedmk. 134, 139, 148, 177, 431, 483,

Helmholh.

Hilbert, 374, 408. 491.

Holgm{ller, 525.

Homogeneous differential equations, 313,
Hooke’s law, 383.

1'Hoapital’s rule, 209.

Hydrostatic arch, 329.

Hyperbolic functions, 506.

Hypersphere, 106.

Identity, Theorems of, 3.
Imaginary, Conjugate, 2, 406.

—— numbers, 401.

—, Pure, 404,

— unit, 494.

Indsterminate forms, 208.
Inequalities, 497, 517, §19.
Infinitesimals, 108.

Inner product, 307.

Integral of a complex function, 518,

- of a differential equation, 309.

~— Surface, 77.

— \ Pdz + Qdy, 225, 228.

—\ Pdz 4+ Qdy -+ Rdz, 232, 237, 241.
Integrating factor, 312, 356, 456, .
Integration by Parts, 23, 35.

— of rational functions, 18,
Invariants, 299, 303,

Irrotational flow, 251, 525.
Isoperimetric problems, 422.

Isothermal changes, 451.

Iterated integral, Definition of, 48, 260.

Jacobi, 371, 442.

Jacobian determinant, 127, 130, 137,
150, 151, 265, 276.

Japanese soreen, 321.

Jericho, 379.

Jordan, 137, 140.

Joshua, 379.

Joule's equivalent, 458.

Kellogg, 330.
Kinematics, 330.
Klein, 339.
Koopman, 438, 449.
Kremer, 170.

Lagrange's equations, 437,
— identity, 308,
— multipliers, 180.
Landen’s transformation, 204.
Laplsce's equation, 146, 149, 150, 236,

247, 48, 250, 421, 422, 515,
e, Transformation of, 420,
- OW‘W. m.
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Latent heat, 457.
law ;;5 the Mean, 48, 108, 121, 172, 209,

Least action, 442.
— squares, 399,
Legendre, 199, 482,
Legendre's equation, 354.
—'8 polynomials or coefficients, 356,
400, 523.
—'g tables, 199.
Leibniz, 339.
Leibniz's rule, 462.
Light, Path of, in a resisting medium,
410.
Limit, Definition of, 107.
Line integrals, 220,
Linear differential equations, 312.
= — —, Simultaneous systems of, 341.
Linearly independent functions, 334, 345.
— gimply connected regions, 227.
Logarithm of negative quality, 7, 501.
Loxodrome, 168.

Marxima and minima, 173.
Maxwell, 525.
Meaning of a differentia) equation, 345.
Mercator’s chart, 169.
Minimum principle, 438, 443.
—- surface, 406, 411, 418.
Modulus, 208, 495.
~— of periodicity, 230.
Mibius, 240
Moments of inertia, 58, 79, 88.
Multiply connected regions, 226, 230.

Normal, Principal, 162.

Order of a differential equation, 309.
Ordinary differential equation, 309.
Orthogonal functions, 397.

— gystems, 163.
Osculating plane, 160.
Outer product, 307.

(p, v)-diagram, 450.

Partial fractions, 5, 17.
Particle on & smooth surface, 447.
Period of the exponential function, 500.
Pierpont, 207, 400, 402, 488.
Plate; ¢f. Vibraling.
Poincaré, 456.
Polynomial, 1.
Potential, 101, 144, 210, 247, 463, 464.
Power neries, 394,

e =, Convergence of a, 521.
Preasure, Specifis, 89, 73.
Primitive of a differential equation, 309.
Principal normal, 162
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Principle, in physics, 486,
Products of inertin, 58. »

Quadratic forms, 177.
Quadrature, 310,

Radicals, Reduction of, 20, 34.
Rational functions, 4, 18.
Rationalization, 27.
Rayleigh, 383.
Reduction formulas, 38.
~— of radicals, 20, 34.
Reversible changes, 449.
Rhumb line, 168.
Rieeati, 506.
Rod; ¢f. Vibrating.
Rodrigues, 400.
Root, 2.
Roots of unity, 498.
Rope round s post, 324,

Scalar produet, 202, 307.
Schlémilch, 208, 207, 490.
Separation of variables, 311.
Simply connected regions, 226.
Simultaneous systems of linear differen-
tial equations, 341.
Singular solution, 349.
Small oscillations, 343.
Solid angle, 79.
Sommerfeld, 371.
Sound equation, 441.
Space curves, 154.
Specific heat, 457.
— reaction, 328.
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Surface integral, 77.
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Taylor's theorem, 172, 520.
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